Notice:

These notes represent personal opinions of work in progress and do not in any way reflect the opinions of any organization or project. All data can be expected to change and evolve as the project evolves.

Please do not cite or refer to any data herein!
Summary

Purpose:
- To provide the Ada Joint Program Office with a cost-effectiveness study on Ada

Strategy:
- Update previous studies on cost-effectiveness of Ada
- Investigate impact of Ada in DoD's software development life cycle.

Findings:
- Significant MCCR software savings possible
 - Due to software reuse, and
 - Due to software effort reduction
- Reduced requirements for software labor
- High degree of capitalization required

Caveat:
- Acquisitions changes needed to achieve projected savings
Approach

Investments in Ada divided into three phases

- Standardization Phase
 - begins in 1970's with language design efforts

- Technology Insertion Phase
 - current time period
 - begins with general availability of compilers

- Changed practices phase
 - capital investments in place
 - workforce has been upgraded
Standardization Phase

- Period prior to general availability of compilers, 1970's to 1985
- Included studies, experimental developments, reviews, and research
- Approximate estimates provided for the costs of achieving standardization
- Useful in determining costs borne by a language standardization program
- Benefits accrue in Technology Insertion phase
 - Standardization expenses trivial compared to potential benefits
Technology Insertion Phase

Phase where initial benefits begin to accrue

- Ada features support software code reuse
- Ada institutionalizes modern practices
- Ada brings modern environment and tools
- Capital investments in hardware and software made
- Training expenses accrued
- Business practices changed
Expenditures Analysis

Expenditures forecast for technology insertion phase ($B)
Personnel Forecast

Workforce sizing needed to forecast costs of introduction of technology

- Breakdown of billable professional man/year used to identify
 - direct professional (software) labor
 - indirect professional (software-related) labor
 - technical support labor
 - administrative support labor

- Forecast based on Expenditure Analysis, reduced base after savings
 - identifies direct, indirect, and vocational labor

- Rough estimates made for
 - Other professional, systems & test labor
 - DoD personnel
Personnel Forecast

Workforce forecast (K people)
Costs Analysis

Costs of insertion of new technology

- **Assumptions**
 - Lowest reasonable cost hardware for all as needed
 - Software tools licensed at market value
 - Company and project investments "tailor" tools

- **Capitalization**
 - Hardware to support APSE (SEE)
 - Operating Systems (including KAPSEs)
 - Ada Compilers
 - Compile/Debug toolsets (code development)
 - SW Productivity toolsets (incl. other life cycle phases)

- **Expenses**
 - APSE (SEE) installation and maintenance costs
 - Continued Training, professional workforce
 - Continued Training, vocational workforce
 - Schools, upgrading coursework & staff

- **Maintenance of technology base**
Costs of New Technology

Costs of insertion of new technology ($B)
Capitalization

- APSE/SEE Hardware
 - User workstations (professionals)
 - User terminals (vocationals)
 - Hosts

- APSE Software
 - Operating System
 - Ada compiler - hosts
 - Ada compiler(s) - targets
 - Compile/Debug toolsets
 - SW Productivity toolsets
Capitalization
Environment

Necessary minimal environment for forecasted savings
Expenses

- Operating Expense Categories
 - APSE/SEE maintenance
 - Training, Technical Professional Workforce
 - Training, Managerial and Admin. Workforce
 - Schools, curricula and workforce upgrade
 - Civil service upgrade
 - Military service upgrade
 - Pay rate increases
Benefits Analysis

Primary benefit factors (reduce quantity of software)

- Improved acquisition practices
 - Reusability

Secondary benefit factors (reduce effort)

- Improved technical practices
 - Modern methods and practices
 - Tool support and automation
 - Distributed workstation environment (turn-around time)
 - Training and experience improvement

- Improved vocational practices
Technical Practices Savings

<table>
<thead>
<tr>
<th>Technological Benefit</th>
<th>Effort Multipliers</th>
<th>Years to Max. Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Modern Pract.</td>
<td>1.0</td>
<td>.82</td>
</tr>
<tr>
<td>Tools</td>
<td>1.0</td>
<td>.83</td>
</tr>
<tr>
<td>Turn-around</td>
<td>1.0</td>
<td>.87</td>
</tr>
<tr>
<td>Training/exper.</td>
<td>1.0</td>
<td>.75</td>
</tr>
<tr>
<td>Product π</td>
<td>1.0</td>
<td>.45</td>
</tr>
<tr>
<td>Savings (%)</td>
<td></td>
<td>55%</td>
</tr>
</tbody>
</table>
Savings Due to Technology
Experience Factor Savings

<table>
<thead>
<tr>
<th>Experience</th>
<th>Effort Multipliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Benefit</td>
<td>Nominal</td>
</tr>
<tr>
<td>Applications experience</td>
<td>1.0</td>
</tr>
<tr>
<td>Machine experience</td>
<td>1.0</td>
</tr>
<tr>
<td>Tool experience</td>
<td>1.0</td>
</tr>
<tr>
<td>product π</td>
<td>1.0</td>
</tr>
</tbody>
</table>
Sensitivity Analysis

<table>
<thead>
<tr>
<th>Factor</th>
<th>Value</th>
<th>Relative “Total” ($B)</th>
<th>Pct. Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current assumptions</td>
<td>(spreadsheet)</td>
<td>47.38</td>
<td></td>
</tr>
<tr>
<td>Inflation rate</td>
<td>1.04</td>
<td>52.24</td>
<td>10.26</td>
</tr>
<tr>
<td></td>
<td>1.05</td>
<td>47.38</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>1.06</td>
<td>42.96</td>
<td>-9.33</td>
</tr>
<tr>
<td></td>
<td>1.07</td>
<td>38.93</td>
<td>-17.83</td>
</tr>
<tr>
<td></td>
<td>1.10</td>
<td>28.85</td>
<td>-39.11</td>
</tr>
<tr>
<td>Avg. salary ($K)</td>
<td>28</td>
<td>45.78</td>
<td>-3.38</td>
</tr>
<tr>
<td></td>
<td>32</td>
<td>47.38</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>36</td>
<td>48.56</td>
<td>2.49</td>
</tr>
<tr>
<td></td>
<td>40</td>
<td>49.44</td>
<td>4.35</td>
</tr>
<tr>
<td>Workstation hardware</td>
<td>6/4/3 ($K/yr)</td>
<td>48.31</td>
<td>1.96</td>
</tr>
<tr>
<td></td>
<td>9/6/4</td>
<td>47.38</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>12/10/8</td>
<td>45.62</td>
<td>-3.71</td>
</tr>
<tr>
<td></td>
<td>18/15/12</td>
<td>43.27</td>
<td>-8.67</td>
</tr>
<tr>
<td>Training</td>
<td>220 days/m-yr</td>
<td>46.41</td>
<td>-2.05</td>
</tr>
<tr>
<td></td>
<td>264 days/m-yr</td>
<td>47.38</td>
<td>0.00</td>
</tr>
<tr>
<td>first yr./subsequent</td>
<td>15/5 days/man</td>
<td>56.83</td>
<td>19.95</td>
</tr>
<tr>
<td></td>
<td>15/10</td>
<td>52.62</td>
<td>11.06</td>
</tr>
<tr>
<td></td>
<td>22/15</td>
<td>47.38</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>22/22</td>
<td>42.52</td>
<td>-10.26</td>
</tr>
<tr>
<td></td>
<td>30/22</td>
<td>40.32</td>
<td>-14.90</td>
</tr>
</tbody>
</table>