Investment Analysis of Software Assets for Product Lines

James V. Withey
October 1996

Software Engineering Institute
Carnegie Mellon University
Pittsburgh, PA 15213

Sponsored by the U.S. Department of Defense

Product Line Systems Program

Our goal is to enable widespread product line practice through architecture-based development.

Emerging Initiatives
- Product Line Practice
- Architecture Tradeoff Analysis
Agenda

Resource allocation
Issues
Investment analysis approach
 • criteria
 • techniques

Focus

<table>
<thead>
<tr>
<th>Group</th>
<th>Activity</th>
<th>Estimate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Senior managers</td>
<td>Strategic planning</td>
<td>Company performance</td>
</tr>
<tr>
<td>Middle managers</td>
<td>Resource allocation</td>
<td>Return on investment</td>
</tr>
<tr>
<td>Project managers</td>
<td>Cost estimation</td>
<td>Cost and schedule performance</td>
</tr>
<tr>
<td>Engineers</td>
<td>Product evaluation</td>
<td>Product quality</td>
</tr>
</tbody>
</table>
Resource Allocation Decisions

<table>
<thead>
<tr>
<th>Objectives</th>
<th>Constraints</th>
</tr>
</thead>
<tbody>
<tr>
<td>Shorter time-to-market</td>
<td>Limited funds</td>
</tr>
<tr>
<td>Lower costs</td>
<td>Limited time</td>
</tr>
<tr>
<td>Greater flexibility</td>
<td>Limited talent</td>
</tr>
<tr>
<td>Higher quality</td>
<td>Low risk</td>
</tr>
</tbody>
</table>

Questions

To define an investment
- Which software assets are likely to shorten time-to-market, increase quality and lower costs?
- What is the best way to phase in software assets so that exposure to uncertainties in technology and the market is reduced?

To evaluate an investment
- Given the time, money and risks involved to develop and deploy software assets, what is the return?
- How does the return compare to other investment opportunities?
Issues

- Asset selection
- Economies of scope
- Opportunity costs
- Investment uncertainty
- Asset portfolio
- Deployment strategy

Asset Selection

Product Line

<table>
<thead>
<tr>
<th>Segments</th>
<th>Forecast</th>
</tr>
</thead>
<tbody>
<tr>
<td>rosy market</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Assets</th>
<th>Total cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domain models</td>
<td></td>
</tr>
<tr>
<td>Architectures</td>
<td></td>
</tr>
<tr>
<td>Documentation</td>
<td></td>
</tr>
<tr>
<td>Code generators</td>
<td></td>
</tr>
<tr>
<td>Components</td>
<td></td>
</tr>
<tr>
<td>Test cases</td>
<td></td>
</tr>
</tbody>
</table>

Activity costs

![Activity costs chart]

Activities
Economies of Scope

<table>
<thead>
<tr>
<th>Economies of Scope</th>
<th>Economies of Scope</th>
</tr>
</thead>
<tbody>
<tr>
<td>Condition when fewer inputs are needed to produce a greater variety of products</td>
<td>Condition when fewer inputs are needed to produce greater quantities of a single product</td>
</tr>
<tr>
<td>Joint production of single items</td>
<td>Single batch production</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Estimate by comparing input quantities or revenue streams</td>
<td>Estimate using cost function based on marginal unit costs</td>
</tr>
<tr>
<td>Management emphasis</td>
<td>Management emphasis</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Opportunity Costs

Opportunity cost is the value of a resource in a competing use.

Opportunity cost of current process

- basis for estimating economies of scope

\[S_m = \sum_{i,j}^{M,V} C_{ij} w_i y_j \]

where:
- \(M \) = set of assets
- \(V \) = number of planned products
- \(y \) = quantity of effort
- \(w \) = hourly rate

Opportunity cost of capital

- basis for discount rate of future cash flows
Investment Uncertainty

Technical uncertainty refers to unknowns involved in completing an investment.
- actual costs
- usability
- benefits

Economic uncertainty refers to events that affect investment return and are beyond the direct control of managers.
- changes in demand
- economic recession
- change in interest rates

Asset Portfolio

<table>
<thead>
<tr>
<th>Products</th>
<th>house arrest</th>
<th>home security</th>
<th>police staffing</th>
<th>car navigation</th>
</tr>
</thead>
<tbody>
<tr>
<td>geographic database</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>remote control interface test suite</td>
<td>✓</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>locator specification language</td>
<td></td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Page 6
Deployment Strategy

A deployment strategy is a plan of action for phasing in a portfolio of assets. It consists of a series of steps that reduce risk and give management the flexibility to respond to contingent events.

Investment Analysis

Investment analysis is a process for defining and evaluating an investment that involves:
- specifying the investment
- analyzing the uncertainties
- constructing a deployment strategy
- quantifying the costs and benefits.

Two step process
- construct asset portfolio
- Estimate portfolio investment
Construct Asset Portfolio

Characterize Product Variety
Screen Patterns
Select Assets
Evaluate Portfolio

Characterize Product Variety

<table>
<thead>
<tr>
<th>Segments</th>
<th>customer profile 1</th>
<th>car trip planner</th>
<th>taxies, couriers</th>
<th>class 2 4x4s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rosy market</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Segments</th>
<th>customer profile 1</th>
<th>car trip planner</th>
<th>taxies, couriers</th>
<th>class 2 4x4s</th>
</tr>
</thead>
<tbody>
<tr>
<td>Key Features</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>City streets</td>
<td>✓</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Road segments</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Terrain overlay</td>
<td></td>
<td></td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>
Screen Patterns

Patterns are shared solutions (e.g. algorithms) or knowledge (e.g. requirements). They are identified or synthesized through software modeling.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope</td>
<td>Proportion of product variety having pattern</td>
</tr>
<tr>
<td>Span</td>
<td>Proportion of system description encapsulated in pattern</td>
</tr>
<tr>
<td>Stability</td>
<td>Description of pattern is cohesive and variations across products are well-defined.</td>
</tr>
<tr>
<td>Encapsulation</td>
<td>Changes are local to pattern and not propagated.</td>
</tr>
</tbody>
</table>

Select Assets

Cost drivers

- % Total cost
- Comprehension
- Implementation
- Integration
- Maintenance activities

Required flexibility
- range of changes that must be accommodated

Skill set of asset users
- domain experts
- C++ software engineers
Evaluate Portfolio

Use criteria that optimize potential for achieving economies of scope

Two examples

![Diagram showing expected scope and asset variation in scope across different spans and development times.]

Estimate Portfolio Investment

Dynamic net present value
- management flexibility
- decision trees
Traditional Net Present Value (NPV)

\[NPV = \sum_{t=0}^{n} \frac{C_{t}^{\text{inflow}} - C_{t}^{\text{outflow}}}{(1+r)t} \]

where:
- \(C_{t}^{\text{inflow}} \) = cash inflows for period \(t \)
- \(C_{t}^{\text{outflow}} \) = cash outflows for period \(t \)
- \(r \) = opportunity cost of capital
- \(t \) = time period
- \(n \) = number of periods in planning horizon

Decision rule:
- If NPV is positive, invest
- If NPV is negative, do not invest

Management Flexibility

Traditional NPV

During an investment project, management has the option to
- make follow-on investments
- abandon the project or
- wait until favorable conditions

These options are included in the investment estimate by building decision trees.
Dynamic Net Present Value

Calculation using decision tree
- working backwards from the future to the present, include best decision of previous step in the NPV calculation of current step.

Decision rule
- invest when the risk-adjusted upside return exceeds the cost of the first step.
- invest if NPV of the option to wait is less than the option to proceed.

Example

where:
- \(I_{\text{architecture}} \) = expense for architecture
- \(I_{\text{components}} \) = expense for components
- \(A, B \) = uncertainties corresponding to points in time
- \(q^* \) = likelihood that architecture meets requirements
- \(q^b \) = likelihood that market is rosy
- \(S^{\text{high}} \) = economies of scope from components in rosy market
- \(S^{\text{low}} \) = economies of scope from components in dismal market
- \(1, 2 \) = management decision points
Net Present Value Equation

\[NPV_{\text{step}2} = -I \text{ components } + q^b (S_{\text{high}} e^{-r(T-B)}) + (1-q^b) (S_{\text{low}} e^{-r(T-B)}) \]

\[NPV_{\text{step}1} = -I \text{ architecture } + q^a (NPV_{\text{step}2} e^{-r(T-A)}) + (1-q^a)(0) \]

where:
- \(r \) = opportunity cost of capital for investment step
- \(T \) = end date of planning horizon

Conclusion

Avoid
- "paralysis by analysis"
- "extinct by instinct"

Provide
- flexibility in decisions
- comparison of alternatives
- understanding and traceability
- what-if analysis