COCOMO II Status and Plans

Brad Clark, Barry Boehm
USC-CSE Annual Research Review
March 10, 1997
Outline

- COCOMO II Status: Brad Clark
 - Model calibration
 - Tool Status
 - Data Status

- COCOMO II Plans: Barry Boehm
 - Tool Plans
 - Model Plans
 - Training and data collection plans
Presentation Outline:

Model Calibration

- Calibration Procedures
- COCOMO II.1997 Model Parameters
- Accuracy Results
- USC COCOMO Software Status
- COSTAR Software Status
- Calibration Data Status
Model Calibration Status:

- Three models comprise COCOMO II:
 - Applications Composition
 - Early Design
 - Post-Architecture
- Post-Architecture model calibrated
- Early Design model will be derived from Post-Architecture
- Applications Composition: need data
Calibration Process:

- Begin with expert-determined apriori model parameters
- Collect Data
- Identify and consolidated highly correlated model parameters
- Statistically determine estimates of consolidated model parameters from data
- Use data determined coefficients to adjust apriori model parameters
- Experiment with weighting factors
Post-Architecture Model:

- Non-linear model:

\[
PM_{estimated} = A \cdot (\text{Size})^B \cdot \prod_{i=1}^{17} EM_i
\]

- A: Multiplicative calibration variable

- B: Captures relative diseconomies of scale. Consists of 5 scale factors:

\[
B = 1.01 + \sum_{j=1}^{5} SF_j
\]

- EM: Effort Multipliers to reflect characteristics of particular software under development.

- Size: Derived from either Source Lines of Code or Function Points. Includes reuse and breakage effects.
Apriori Model Parameters:

<table>
<thead>
<tr>
<th>Driver</th>
<th>Symbol</th>
<th>VL</th>
<th>L</th>
<th>N</th>
<th>H</th>
<th>VH</th>
<th>XH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREC</td>
<td>SF_1</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.0</td>
</tr>
<tr>
<td>FLEX</td>
<td>SF_2</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.0</td>
</tr>
<tr>
<td>RESL</td>
<td>SF_3</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.0</td>
</tr>
<tr>
<td>TEAM</td>
<td>SF_4</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.0</td>
</tr>
<tr>
<td>PMAT</td>
<td>SF_5</td>
<td>0.05</td>
<td>0.04</td>
<td>0.03</td>
<td>0.02</td>
<td>0.01</td>
<td>0.0</td>
</tr>
<tr>
<td>RELY</td>
<td>EM_1</td>
<td>0.75</td>
<td>0.88</td>
<td>1.00</td>
<td>1.15</td>
<td>1.40</td>
<td></td>
</tr>
<tr>
<td>DATA</td>
<td>EM_2</td>
<td>0.94</td>
<td></td>
<td>1.00</td>
<td>1.08</td>
<td>1.16</td>
<td></td>
</tr>
<tr>
<td>CPLX</td>
<td>EM_3</td>
<td>0.75</td>
<td>0.88</td>
<td>1.00</td>
<td>1.15</td>
<td>1.30</td>
<td>1.65</td>
</tr>
<tr>
<td>RUSE</td>
<td>EM_4</td>
<td>0.89</td>
<td></td>
<td>1.00</td>
<td>1.16</td>
<td>1.34</td>
<td>1.56</td>
</tr>
<tr>
<td>DOCU</td>
<td>EM_5</td>
<td>0.85</td>
<td>0.93</td>
<td>1.00</td>
<td>1.08</td>
<td>1.17</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EM_6</td>
<td></td>
<td>1.00</td>
<td>1.11</td>
<td>1.30</td>
<td>1.66</td>
<td></td>
</tr>
<tr>
<td>STOR</td>
<td>EM_7</td>
<td></td>
<td>1.00</td>
<td>1.06</td>
<td>1.21</td>
<td>1.56</td>
<td></td>
</tr>
<tr>
<td>PVOL</td>
<td>EM_8</td>
<td>0.87</td>
<td>1.00</td>
<td>1.15</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Driver</td>
<td>Symbol</td>
<td>VL</td>
<td>L</td>
<td>N</td>
<td>H</td>
<td>VH</td>
<td>XH</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>----</td>
<td>----</td>
<td>----</td>
<td>---</td>
<td>----</td>
<td>----</td>
</tr>
<tr>
<td>ACAP</td>
<td>EM₉</td>
<td>1.5</td>
<td>1.22</td>
<td>1.00</td>
<td>0.83</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>PCAP</td>
<td>EM₁₀</td>
<td>1.37</td>
<td>1.16</td>
<td>1.00</td>
<td>0.87</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>PCON</td>
<td>EM₁₁</td>
<td>1.26</td>
<td>1.11</td>
<td>1.00</td>
<td>0.91</td>
<td>0.83</td>
<td></td>
</tr>
<tr>
<td>AEXP</td>
<td>EM₁₂</td>
<td>1.23</td>
<td>1.10</td>
<td>1.00</td>
<td>0.88</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>PEXP</td>
<td>EM₁₃</td>
<td>1.26</td>
<td>1.12</td>
<td>1.00</td>
<td>0.88</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>LTEX</td>
<td>EM₁₄</td>
<td>1.24</td>
<td>1.11</td>
<td>1.00</td>
<td>0.9</td>
<td>0.82</td>
<td></td>
</tr>
<tr>
<td>TOOL</td>
<td>EM₁₅</td>
<td>1.20</td>
<td>1.10</td>
<td>1.00</td>
<td>0.88</td>
<td>0.75</td>
<td></td>
</tr>
<tr>
<td>SITE</td>
<td>EM₁₆</td>
<td>1.24</td>
<td>1.10</td>
<td>1.00</td>
<td>0.92</td>
<td>0.85</td>
<td>0.79</td>
</tr>
<tr>
<td>SCED</td>
<td>EM₁₇</td>
<td>1.23</td>
<td>1.08</td>
<td>1.00</td>
<td>1.04</td>
<td>1.10</td>
<td></td>
</tr>
</tbody>
</table>
Data Collection:

- Define the data needed (to completely describe the Post Architecture Model)

- Collect data with a paper form or a computer software tool

- Affiliate Organizations providing majority of data.
 - Historical - whole project

- Site visits or phone interviews to record data

- Enter in data into the repository
 - Data is labeled with generic id
 - Stored in locked room
 - Limited access by researchers
 - Data Consistency checking and conditioning
Consolidated Highly Correlated Parameters:

<table>
<thead>
<tr>
<th></th>
<th>TIME</th>
<th>STOR</th>
<th>ACAP</th>
<th>PCAP</th>
</tr>
</thead>
<tbody>
<tr>
<td>TIME</td>
<td>1.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STOR</td>
<td>0.6860</td>
<td>1.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACAP</td>
<td>-0.2855</td>
<td>-0.0769</td>
<td>1.0000</td>
<td></td>
</tr>
<tr>
<td>PCAP</td>
<td>-0.2015</td>
<td>-0.0027</td>
<td>0.7339</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

- Combined (for calibration purposes only):
 - TIME & STOR into RCON (Resource Constraints)
 - ACAP & PCAP into PERS (Personnel Factors)

- Thus, calibrated 15 effort multipliers instead of 17
Expanded Post-Architecture Model:

- Distribute the Scale Factors
- 21 predictor variables: 15 Effort Multiplier Coefficients + 5 Scale Factor Coefficients + overall A constant:

\[PM_{est} = A \cdot (Size)^{1.01} \cdot (Size)^{SF_1} \cdot (Size)^{SF_2} \cdots EM_1 \cdots EM_{15} \]

Log Transformed Model:

- Regression analysis will derive the coefficients, \(A \) and \(b_i \), for each factor

\[\ln(PM_{est}) - \ln(Size)^{1.01} = A + b_1 SF_1 \ln(Size) + \cdots + b_{20} \ln(EM_{15}) \]
Example of Applying Coefficients to Model Apriori Parameters:

<table>
<thead>
<tr>
<th>Driver</th>
<th>Symbol</th>
<th>VL</th>
<th>L</th>
<th>N</th>
<th>H</th>
<th>VH</th>
<th>XH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREC</td>
<td>SF₁</td>
<td>-0.04510</td>
<td>-0.03608</td>
<td>-0.02706</td>
<td>-0.01804</td>
<td>-0.00902</td>
<td></td>
</tr>
<tr>
<td>FLEX</td>
<td>SF₂</td>
<td>0.15711</td>
<td>0.12569</td>
<td>0.09427</td>
<td>0.06284</td>
<td>0.03142</td>
<td></td>
</tr>
<tr>
<td>RESL</td>
<td>SF₃</td>
<td>-0.02793</td>
<td>-0.02234</td>
<td>-0.01676</td>
<td>-0.01117</td>
<td>-0.00559</td>
<td></td>
</tr>
<tr>
<td>TEAM</td>
<td>SF₄</td>
<td>0.04421</td>
<td>0.03537</td>
<td>0.02653</td>
<td>0.01769</td>
<td>0.00884</td>
<td></td>
</tr>
<tr>
<td>PMAT</td>
<td>SF₅</td>
<td>0.00442</td>
<td>0.00354</td>
<td>0.00265</td>
<td>0.00177</td>
<td>0.00088</td>
<td></td>
</tr>
<tr>
<td>RELY</td>
<td>EM₁</td>
<td>0.79469</td>
<td>0.90293</td>
<td>1.00000</td>
<td>1.11811</td>
<td>1.30836</td>
<td></td>
</tr>
<tr>
<td>DATA</td>
<td>EM₂</td>
<td>0.85520</td>
<td>1.00000</td>
<td>1.21477</td>
<td>1.45528</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CPLX</td>
<td>EM₃</td>
<td>0.72207</td>
<td>0.86529</td>
<td>1.00000</td>
<td>1.17140</td>
<td>1.34578</td>
<td>1.76268</td>
</tr>
<tr>
<td>RUSE</td>
<td>EM₄</td>
<td>1.05312</td>
<td>1.00000</td>
<td>0.93621</td>
<td>0.87812</td>
<td>0.82079</td>
<td></td>
</tr>
<tr>
<td>DOCU</td>
<td>EM₅</td>
<td>1.24092</td>
<td>1.10119</td>
<td>1.00000</td>
<td>0.90283</td>
<td>0.81178</td>
<td></td>
</tr>
<tr>
<td>RCON</td>
<td>EM₆₋₇</td>
<td>1.00000</td>
<td>1.25367</td>
<td>1.85656</td>
<td>3.66875</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PVOL</td>
<td>EM₈</td>
<td>0.88734</td>
<td>1.00000</td>
<td>1.12745</td>
<td>1.25256</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PERS</td>
<td>EM₉₋₁₀</td>
<td>2.03654</td>
<td>1.40906</td>
<td>1.00000</td>
<td>0.72505</td>
<td>0.50436</td>
<td></td>
</tr>
<tr>
<td>PCON</td>
<td>EM₁₁</td>
<td>1.07384</td>
<td>1.03269</td>
<td>1.00000</td>
<td>0.97135</td>
<td>0.94418</td>
<td></td>
</tr>
<tr>
<td>AEXP</td>
<td>EM₁₂</td>
<td>1.12304</td>
<td>1.05488</td>
<td>1.00000</td>
<td>0.93085</td>
<td>0.88243</td>
<td></td>
</tr>
</tbody>
</table>
RUSE Effort Multiplier:

- Example of the effect of a negative coefficient
Distribution of RUSE:

![Bar Chart]

Frequency

RUSE
Evolving Model Values:

100% Data Driven

100% Expert Driven

Number of projects used in calibration
Aposteriori Model Parameters

- Using 10% of data-determined and 90% of apriori
- Effort constant, A: 2.45

<table>
<thead>
<tr>
<th>Driver</th>
<th>Symbol</th>
<th>VL</th>
<th>L</th>
<th>N</th>
<th>H</th>
<th>VH</th>
<th>XH</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREC</td>
<td>SF₁</td>
<td>0.0405</td>
<td>0.0324</td>
<td>0.0243</td>
<td>0.0162</td>
<td>0.0081</td>
<td>0.00</td>
</tr>
<tr>
<td>FLEX</td>
<td>SF₂</td>
<td>0.0607</td>
<td>0.0486</td>
<td>0.0364</td>
<td>0.0243</td>
<td>0.0121</td>
<td>0.00</td>
</tr>
<tr>
<td>RESL</td>
<td>SF₃</td>
<td>0.0422</td>
<td>0.0338</td>
<td>0.0253</td>
<td>0.0169</td>
<td>0.0084</td>
<td>0.00</td>
</tr>
<tr>
<td>TEAM</td>
<td>SF₄</td>
<td>0.0494</td>
<td>0.0395</td>
<td>0.0297</td>
<td>0.0198</td>
<td>0.0099</td>
<td>0.00</td>
</tr>
<tr>
<td>PMAT</td>
<td>SF₅</td>
<td>0.0454</td>
<td>0.0364</td>
<td>0.0273</td>
<td>0.0182</td>
<td>0.0091</td>
<td>0.00</td>
</tr>
<tr>
<td>RELY</td>
<td>EM₁</td>
<td>0.75</td>
<td>0.88</td>
<td>1.00</td>
<td>1.15</td>
<td>1.39</td>
<td></td>
</tr>
<tr>
<td>DATA</td>
<td>EM₂</td>
<td></td>
<td>0.93</td>
<td>1.00</td>
<td>1.09</td>
<td>1.19</td>
<td></td>
</tr>
<tr>
<td>CPLX</td>
<td>EM₃</td>
<td>0.75</td>
<td>0.88</td>
<td>1.00</td>
<td>1.15</td>
<td>1.30</td>
<td>1.66</td>
</tr>
<tr>
<td>RUSE</td>
<td>EM₄</td>
<td></td>
<td>0.91</td>
<td>1.00</td>
<td>1.14</td>
<td>1.29</td>
<td>1.49</td>
</tr>
<tr>
<td>DOCU</td>
<td>EM₅</td>
<td>0.89</td>
<td>0.95</td>
<td>1.00</td>
<td>1.06</td>
<td>1.13</td>
<td></td>
</tr>
<tr>
<td>TIME</td>
<td>EM₆</td>
<td></td>
<td>1.00</td>
<td>1.11</td>
<td>1.31</td>
<td>1.67</td>
<td></td>
</tr>
<tr>
<td>STOR</td>
<td>EM₇</td>
<td></td>
<td>1.00</td>
<td>1.06</td>
<td>1.21</td>
<td>1.57</td>
<td></td>
</tr>
<tr>
<td>Driver</td>
<td>Symbol</td>
<td>VL</td>
<td>L</td>
<td>N</td>
<td>H</td>
<td>VH</td>
<td>XH</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
<td>-----</td>
<td>------</td>
<td>----</td>
<td>------</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>PVOL</td>
<td>EM₈</td>
<td>0.87</td>
<td>1.00</td>
<td>1.15</td>
<td>1.30</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ACAP</td>
<td>EM₉</td>
<td>1.50</td>
<td>1.22</td>
<td>1.00</td>
<td>0.83</td>
<td>0.67</td>
<td></td>
</tr>
<tr>
<td>PCAP</td>
<td>EM₁₀</td>
<td>1.37</td>
<td>1.16</td>
<td>1.00</td>
<td>0.87</td>
<td>0.74</td>
<td></td>
</tr>
<tr>
<td>PCON</td>
<td>EM₁₁</td>
<td>1.24</td>
<td>1.10</td>
<td>1.00</td>
<td>0.92</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>AEXP</td>
<td>EM₁₂</td>
<td>1.22</td>
<td>1.10</td>
<td>1.00</td>
<td>0.89</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>PEXP</td>
<td>EM₁₃</td>
<td>1.25</td>
<td>1.12</td>
<td>1.00</td>
<td>0.88</td>
<td>0.81</td>
<td></td>
</tr>
<tr>
<td>LTEX</td>
<td>EM₁₄</td>
<td>1.22</td>
<td>1.10</td>
<td>1.00</td>
<td>0.91</td>
<td>0.84</td>
<td></td>
</tr>
<tr>
<td>TOOL</td>
<td>EM₁₅</td>
<td>1.24</td>
<td>1.12</td>
<td>1.00</td>
<td>0.86</td>
<td>0.72</td>
<td></td>
</tr>
<tr>
<td>SITE</td>
<td>EM₁₆</td>
<td>1.25</td>
<td>1.10</td>
<td>1.00</td>
<td>0.92</td>
<td>0.84</td>
<td>0.78</td>
</tr>
<tr>
<td>SCED</td>
<td>EM₁₇</td>
<td>1.29</td>
<td>1.10</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td></td>
</tr>
</tbody>
</table>

- Calibrated schedule constant, A: 2.66 (apriori value was 3.0)

\[
TDEV = [A \cdot (PM)^{(0.33+0.2 \cdot \sum SF_i)}] \cdot \frac{SCED\%}{100}
\]
Presentation Outline:

- Model Calibration
- Calibration Procedures
- COCOMO II 1997 Model Parameters

Analysis Results
- USC COCOMO Software Status
- COSTAR Software Status
- Calibration Data Status
Accuracy Results:

- Forecast accuracy measured with Proportional Error (PE):

\[
PE = \begin{cases}
\left[PM_{est} \div PM_{act} \right] - 1, & (PM_{est} - PM_{act}) \geq 0 \\
- \left[PM_{act} \div PM_{est} \right] + 1, & (PM_{est} - PM_{act}) < 0
\end{cases}
\]

<table>
<thead>
<tr>
<th>Effort Prediction</th>
<th>Before Stratification By Organization</th>
<th>After Stratification By Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRED(.20)</td>
<td>42%</td>
<td>47%</td>
</tr>
<tr>
<td>PRED(.25)</td>
<td>47%</td>
<td>56%</td>
</tr>
<tr>
<td>PRED(.30)</td>
<td>51%</td>
<td>66%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Schedule Prediction</th>
<th>Before Stratification By Organization</th>
<th>After Stratification By Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRED(.20)</td>
<td>48%</td>
<td>51%</td>
</tr>
<tr>
<td>PRED(.25)</td>
<td>52%</td>
<td>53%</td>
</tr>
<tr>
<td>PRED(.30)</td>
<td>57%</td>
<td>59%</td>
</tr>
</tbody>
</table>
Effort Proportional Error before Stratification

![Diagram showing Effort Proportional Error (PE) against Organization Number]
Effort Proportional Error after Stratification

- Projects

Organization Number

PE

0.00

-3.00

-2.00

-1.00

1.00

2.00

3.00
USC COCOMO Software Status:

- There is an initial version available for MS Windows, Sun OS, and Java

 - Has new calibrated values
 - Confidence ranges (optimistic, most likely, pessimistic)
 - User definable Cost Drivers: USR1, USR2
 - Schedule input is now project wide
 - New reference manual
 - New values can be manually input for all cost drivers
 - Version changed to COCOMO II.199Y.X
 (where Y is the year number and X is the version within that year)
USC COCOMO Future Work:

- Entry of actuals for periodic tracking of project and data submission
- Calibration of constant and exponent
- Incremental ratings between Very Low, Low, Nominal, High, Very High, Extra High
- Text entry for SU, AA, UNFM
- New Help file
COSTAR Software Status

- Commercialized version of COCOMO
- Beta version of COCOMO II model available
- New values will be put in the model soon
Calibration Data Status

- More project data is required to facilitate better calibration of the general COCOMO II Post-Architecture model.

- We hope the use of USC COCOMO software will facilitate collection and submission of data.

- If you calibrate the model to your local organization (constant and exponent) - we would like to have your observations in our repository to be used for full model calibration.

- We plan to make annual updates to the cost driver values and release them on a regular cycle.
Information Sources:

- Phone: 213-740-6470
- Email: cocomo-info@sunset.usc.edu
- Web site: http://sunset.usc.edu/COCOMOII/Cocomo.html

- Affiliate Prospectus
- Model Definition Manual (ver. 1.4)
- Data Collection Form (ver. 1.6)
- Java COCOMO
- Little Expert COCOMO Calculator
Outline

• COCOMO II Status: Brad Clark
 – Model calibration
 – Tool Status
 – Data Status

• COCOMO II Plans: Barry Boehm
 – Tool Plans
 – Model Plans
 – Training and data collection plans
Tool Plans: USC COCOMO II.1997.1

- Calibration to an organization’s data
 - Effort and/or schedule
 - Coefficient or also exponent
- Intermediate rating levels
- Updated Madachy risk assessment model
- Added reuse parameters: SU, AA, UNFM
Calibration

- Provide a way of capturing and retaining a set of projects.
- Capability of changing C (constant) and E (exponent) from cocomo equation.
- Provide users with 2 ways of using C and E.
 - Standard cocomo values
 - Calibrated values
Model Plans: Affiliate Priorities

14 • Activity distribution

13 • COTS integration costs

12 • Sizing improvements

5 • Cost/schedule/quality tradeoffs

5 • Life cycle tradeoff models
Effort Distribution by Activity

- Effort/FP varies by language level (LL)
 - But so does effort/SLOC!

- Proposed approach
 - SLOC, LL $$\Rightarrow$$ Effort:
 - Determine equivalent 3GL SLOC (3SLOC) via backfiring
 - Compute effort as $$F(3\text{SLOC})$$
 - Apply LL stage multipliers to obtain activity distribution, total effort
 - UFP, LL $$\Rightarrow$$ Effort
 - Determine 3SLOC by backfiring
 - Compute effort as $$F(3\text{SLOC})$$
 - Apply LL stage multipliers to obtain activity distribution, total effort
4GL Cost and Schedule Effects
[Verner-Tate, 1988]

- Correspondence school information system
- Estimated size: 15 KDSI ALL [4GL], 95 KDSI COBOL
- Actual size: 13.9 KDSI ALL, 93.6 KDSI equiv. COBOL
- Data on phase distribution of effort and schedule
4GL Estimates vs. Actuals

<table>
<thead>
<tr>
<th>Quantity</th>
<th>COCOMO-COBOL</th>
<th>COCOMO-4GL</th>
<th>Actual</th>
<th>Recom. Use</th>
</tr>
</thead>
<tbody>
<tr>
<td>Size</td>
<td>93.6KSLOC</td>
<td>13.9</td>
<td>13.9</td>
<td>COBOL:11.6</td>
</tr>
<tr>
<td>Schedule</td>
<td>--</td>
<td>11.6Mo</td>
<td>12.0</td>
<td>Mix:62.7</td>
</tr>
<tr>
<td>Effort</td>
<td>247.5PM</td>
<td>37.7</td>
<td>61.6</td>
<td>COBOL</td>
</tr>
<tr>
<td>Plans&Rqts</td>
<td>14.8</td>
<td>2.3</td>
<td>14.9</td>
<td>3*4GL</td>
</tr>
<tr>
<td>Prel Design</td>
<td>51.2</td>
<td>7.2</td>
<td>20.5</td>
<td>4GL</td>
</tr>
<tr>
<td>DD/CUT/I&T</td>
<td>196.3</td>
<td>30.5</td>
<td>26.2</td>
<td></td>
</tr>
</tbody>
</table>
Effort Distribution Relative to 3GL Development

Rapid App. Devel.

Spiral-type Ev. Dev., Spiral

LCO, LCA SAT

5GL 4 10 10

Sys Devel.

Spiral-type Waterfall, Spiral-type W'fall, IncDev, EvDev, Spiral, Design-to-Cost, etc.

LCO LCA Code, Integ., Test

Det. Design

4GL 6 9 13 21

3GL 7 17 25 58 100

2GL 8 19 27 154 200
Proposed UML-Based Sizing Model

- Rational’s Universal Modeling Language (Booch, Jacobson, Rumbaugh) approaching de-facto OOD standard
- A UML-based early sizing metric would address two major current short falls with Function Points
 - Automated counting
 - Object-orientation
- Rational (Walker Royce) is interested in pursuing such a project
- Would need some Affiliates to provide data
Model Elements

- **Class**
 - A set of objects that share a common structure and a common behavior

- **Use case/collaboration**
 - A named behavior involving the collaboration of a society of objects

- **State/operation**
 - The condition of an object; an activity

- **Interface**
 - The public part of an object

- **Thread**
 - An active class, capable of concurrent activity with other active classes

Model Elements (cont)

- **Component**
 - A reusable part, typically having both logical as well as physical aspects

- **Node**
 - A hardware device upon which software may reside and/or execute

- **Package**
 - A container of elements

- **Note**
 - A comment, explanation, or annotation
Diagrams

- Class diagram
- State machine diagram
- Sequence diagram
- Collaboration diagram
- Activity diagram
- Use case diagram
- Component diagram
- Deployment diagram

Architecture

- End-user Functionality
 - Logical View
- Analysts/Testers Behavior
 - Use Case View
 - Concurrency View
 - Deployment View
- Programmers Software management
 - Component View

- System Integrators
 - Performance
 - Scalability
 - Throughput
- System Engineering System topology
 - Delivery, installation
 - Communication

©1997 Rational Software Corporation The Unified Modeling Language
Training and Data Collection Plans

- USC COCOMO II.1997.1 or COSTAR/CALICO as data collection instruments
- Proposed role for Don Reifer
 - Meet broader need for COCOMO II training
 - Make data collection easier, more efficient
ROLE FOR DON REIFER

• Assist team in calibrating COCOMO-II
 – Use his databases, when applicable, to help calibrate the model
 – Run statistical tools to generate goodness of fit and other meaningful measures

• Provide ideas based on his extensive cost modeling experience

• Develop public training and help get data for the model’s continued refinement
WIN-WIN SITUATION

• USC and Affiliates get:
 – Calibration data and the results of an analysis of about 500 projects
 – Extensive knowledge base of experience of one of the leaders in field of parametric modeling
 – Public courseware when they need it

• Reifer Consultants (RCI) gets:
 – In-depth knowledge of COCOMO-II
 – Ability to consult and market COCOMO-II courseware and make a profit
USC/RCI AGREEMENTS

• RCI will not market COCOMO packages
 – Their focus will be training and consulting
• RCI will not market competing packages
 – Their agreement with Resource Calculations has been terminated
 – They have elected to discontinue support for their SoftCost product line in the future
• USC will cooperate and get data and feedback from the trained model users