A Comparison of the COCOMO and SLIM Cost Estimation Models in Commercial Product Development Environments

Jeff Singer and Cindy Friedman
Ensemble Partners, Inc.

Background

- Clients Develop High Volume Commercial Products
- Typically Low to Mid SEI Level 1 Organizations Using "Intuitive Guessing"
- Environment Is Often Very Basic
 - No Formal Data Collection Systems
 - No Code Sizing Practice In Place
 - No Life Cycle Model Data Used
The Use of Two Models

- COCOMO Because:
 - Open Model With Many Low Cost Implementations
 - COCOMO Calibration Process Gives Insight Into Client Process

- SLIM Because:
 - Open Model With Broad Published Database
 - Key Parameters (MBP and PP) Allow Quick Characterization of Client Process From Historical Data

Basic Effort and Schedule Equations

\[\text{Effort} = K_1 \times (\text{Size})^{\exp 1} \]

\[\text{Schedule} = K_2 \times (\text{Effort})^{\exp 2} \]
Effort Equations

SLIM:
\[E_{\text{proj}}(x_{-m}) = 50,420 \times \left(\frac{F_c \times MBP^1}{PP^1} \right) \times KLOC^1 \]

COCOMO:
\[\text{Effort}_{(x_{-m})} = 2.45 \times E.A.F. \times (KLOC)^{1/6} \]

Where: \(S.F. = 1.01 + 0.01 \sum_{i} SF_i \)

Schedule Equations

SLIM:
\[t_{\text{proj}}(\text{min}) = 9.5555 \times \left(\frac{1}{F_{E.F.D} \times MBP} \right)^1 \times \left(E_{\text{proj}}(x_{-m}) \right)^1 \]

\[t_{\text{proj}}(\text{min}) = \left[353.4 \times \left(\frac{B}{MBP} \right)^1 \times \left(\frac{1}{PP} \right)^1 \times (KLOC)^1 \right] \]

COCOMO:
\[\text{Sched.}_{\text{min}} = 2.66 \times (\text{Effort}_{(x_{-m})})^{0.313} \times (S.F. - 1.01) \]

\[\text{Sched.}_{\text{min}} = \left[2.66 \times (2.45 \times E.A.F.)^{0.313} \times (KLOC)^{0.313} \times (S.F. - 1.01) \right] \]
Observations on Master Equations

- SLIM is a fixed Exponent Model With Values of 1.286 (9/7) for Effort; 0.333 (1/3) and 0.429 (3/7) for Schedule
- SLIM Makes Heuristic Adjustments for Small Program Size (<70 KLOC)
- COCOMO Schedule Equation Complicated by S.F. Term In Linear Coefficient
- COCOMO Variable Exponent Provides Additional Flexibility

Range of Calibration Agreement of Models

<table>
<thead>
<tr>
<th>E.A.F. and S.F. Values Corresponding to Full Range of MBP and PP Values for Program Size<240 KLOC</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBP</td>
</tr>
<tr>
<td>15.44</td>
</tr>
<tr>
<td>21.89</td>
</tr>
<tr>
<td>15.73</td>
</tr>
<tr>
<td>3.362</td>
</tr>
<tr>
<td>5.186</td>
</tr>
<tr>
<td>1.974</td>
</tr>
<tr>
<td>1.129</td>
</tr>
</tbody>
</table>

Key: (E.A.F., S.F.)
Range of Estimate Agreement of Models

E.A.F. and S.F. Ranges Which Generate Estimates Meeting Error Criteria for Program Sizes 30 KLOC to 200 KLOC

<table>
<thead>
<tr>
<th>PP</th>
<th>MRP<7.7</th>
<th>MRP<7.9</th>
<th>MRP<28.8</th>
<th>MRP<35.0</th>
<th>MRP<49.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>30.657</td>
<td>None</td>
<td>(1.04±2.20)</td>
<td>(1.07±4.20)</td>
<td>None</td>
<td>None</td>
</tr>
<tr>
<td>8.362</td>
<td>None</td>
<td>(1.18±4.20)</td>
<td>(1.22±4.20)</td>
<td>(1.30±4.20)</td>
<td>None</td>
</tr>
<tr>
<td>1.997</td>
<td>None</td>
<td>(1.23±4.20)</td>
<td>(1.25±4.20)</td>
<td>(1.23±4.20)</td>
<td>None</td>
</tr>
</tbody>
</table>

For S.F. Range:

20.37 Range

Example Estimate Curves for SLIM:(MBP=26.9, PP=8,362);
COCOMO:(E.A.F.=2.02, S.F.=1.12)

Calibration Point=80 KLOC
Summary

- COCOMO Is Variable Exponent Model, SLIM Fixed
- In Standard Form, SLIM Has Larger Range of Application
- Models Give Similar Estimates When Calibrated to Common Base Data
- Use of Both Models Often Improves Insight Into Client Process