RAD Opportunity Tree
Perspectives

Barry Boehm, USC
USC-CSE RAD Executive Workshop
March 11, 1998
email: boehm@sunset.usc.edu
http://sunset.usc.edu

Outline

• USC-CSE Welcome
• RAD Context
 – Video
• RAD Opportunity Tree and Strategies
• RAD Issues
 – Biggest Opportunity Areas
• Some Successful RAD Experiences
RAD Motivation

- Earlier ROI
- Market Window
- Technology Half-Life

Biggest Opportunity Areas

- People and teambuilding
- Prepositioning
 - Domain engineering, architecting
 - Reusable everything: plans, specs, class libraries, middleware, tests, manuals
 - Integrated product, process, property, and success models
 - Tools and facilities
 - Preworking asset evolution
Complexity of RAD Improvements

- Cost: task savings basically map 1:1 into project savings
- Schedule: task savings map 1:1 into project savings only while task is on critical path
 - Complicating factors: scale, dynamism, interdependent tasks
 - System dynamics an attractive analysis approach

Example System Dynamics Analysis (Madachy)
RAD Opportunity Tree

- Eliminating Tasks
 - Business process reengineering
 - Reusing assets
 - Applications generation
 - Design-to-schedule

- Reducing time per task
 - Tools and automation
 - Work Streamlining (80-20)
 - Increasing parallelism

- Reducing risks of single-point failures
 - Reducing failures
 - Reducing their effects

- Reducing backtracking
 - Early error elimination
 - Process anchor points
 - Improving process maturity
 - Collaboration technology

- Activity network streamlining
 - Minimizing task dependencies
 - Avoiding high fan-in, fan-out
 - Reducing task variance
 - Removing tasks from critical path

- Increasing effective workweek
 - 24x7 development
 - Nightly builds, testing
 - Weekend warriors

- Better people and incentives

- Transition to learning organization
Design-to-Schedule

“If schedule is your independent variable, then just modulate your functionality to meet schedule.”

- Critical success factors:
 - Prioritized requirements
 - A reasonable “ballpark” schedule estimate
 - Software design for ease of contraction
 - Schedule tracking for midcourse corrections

Pareto Analysis of Rework Costs

![Pareto Chart]

- 100% Project B
- 100% Project A

% of Cost to Fix SPRs

Number of Similar Systems

<table>
<thead>
<tr>
<th>Project</th>
<th>Number of Similar Systems</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project A</td>
<td>20</td>
</tr>
<tr>
<td>Project B</td>
<td>60</td>
</tr>
</tbody>
</table>

Collaboration and Negotiation Techniques

- Highlighted in 3 of the last 6 ICSE keynote addresses
 - Tom DeMarco, “How the requirements were negotiated is far more important than how the requirements were specified.”
 - Ed Yourdon, “Negotiation is the best way to avoid Death March projects.”
 - Mark Weiser, “Problems with reaching agreement were more critical to my projects’ success than such factors as tools, process maturity, and design methods.”
Reducing Task Variance

- Or, "Where did that week go?"

-- Are these two networks equivalent?

4 Equally likely outcomes

\[EV = \frac{20}{4} = 5 \text{ weeks}\]

Getting Tasks Off the Critical Path

- Decomposition and parallelization
 - Replace Critical Design Review by unit inspections
 - Pre-integrate subsystems
 - Parallelize off-nominal testing
 - Massive beta testing
 - Pre-work unit level acceptance tests

- Pre-positioning facilities, components, tools, experts, data
 - "Overinvesting" on reusable components
“Overinvesting” in Reusable Components

Number of Similar Systems

Cumulative Cost

People and RAD

- Better and fewer people
 - Bright, quick, versatile, adaptable, creative, experienced, focused
- Clear RAD priorities and incentives
- Teambuilding and shared vision
 - All of the stakeholders
- Co-location
- Capitalization
- Learning, metrics, continuous improvement
Outline

- RAD Context
- RAD Opportunity Tree and Strategies
- RAD Issues
 - Biggest Opportunity Areas
- Some Successful RAD Experiences

Biggest Opportunity Areas

- People and teambuilding
- Prepositioning
 - Domain engineering, architecting
 - Reusable everything: plans, specs, class libraries, middleware, tests, manuals
 - Integrated product, process, property, and success models
 - Tools and facilities
 - Preworking asset evolution
Reuse at HP's Queensferry Telecommunication Division

<table>
<thead>
<tr>
<th>Year</th>
<th>86</th>
<th>87</th>
<th>88</th>
<th>89</th>
<th>90</th>
<th>91</th>
<th>92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Time to Market (months)</td>
<td>70</td>
<td>60</td>
<td>50</td>
<td>40</td>
<td>30</td>
<td>20</td>
<td>10</td>
</tr>
</tbody>
</table>

- **Non-reuse Project**
- **Reuse project**

Prepositioning Example: TRW CCPDS-R

- **Large IR&D investment**
 - Domain engineering and architecting
 - Infrastructure: UNAS precursor
 - Tools: Rational Ada tools; metrics; documents templates
 - Ada process model
- **People, teambuilding, and incentives**
 - Flowdown of award fee to performers
- **Results**
 - Spectacular 3-week SW Engineering Exercise
 - 1 MLOC within ambitious budget and schedule
RAD with the WinWin Spiral Model

- 11 weeks to architect 15 Library Multimedia archive applications
 - Films/videos, images, manuscripts, urban plans, business reports, etc.
 - Using LCO, LCA anchor point deliverables
 - Using WinWin negotiation system
 - All delivered on schedule; clients highly satisfied

- 11 weeks to develop 6-8 of architected applications
 - Full product-oriented deliverables
 - All delivered on schedule
 - All highly satisfactory to clients except one

- 3-in-1 merge of image archives

MISSE Integration Framework

Success Models
- Win-Win, IKI/WSI, Business-Case, Mission Models,...

Process Models
- Life-Cycle
 - Evolutionary
 - Incremental
 - WW Spiral
 - Anchor Points
 - Risk Mgmt
 - Activities
 - CMM KPA's

Evaluation Criteria

V & V Criteria

Product Development

A Evolution Process

Planning & Control

Evaluation & Analysis

Property Models
- Cost & Schedule: Performance: Assurance: Usability,...

MISSE: Model-Integrated Software System Engineering
Elements of Critical Front End Milestones

<table>
<thead>
<tr>
<th>Milestone Element</th>
<th>Life Cycle Objectives (LCO)</th>
<th>Life Cycle Architecture (LCA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definition of Operational Concept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>System Prototypes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definition of System Requirements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definition of System and Software Architecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Definition of Life-Cycle Plan</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Feasibility Rationale</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

MISSE Model Integration: LCO Stage

![Diagram showing MISSE Model Integration: LCO Stage](image-url)

Domain Model
- WinWin Taxonomy
- Stakeholders, Primary win conditions
- Frequent Risks
- Environment Models
- Basic Concept of Operation
 - WinWin Negotiation Model
 - IKIWIWI Model, Prototypes, Properties Models

Requirements Description
- Validate LCO
- Validate Architectural Options
- Update Life Cycle Plan elements

Updated Concept of Operation
- Validate LCO Rationale

Biggest Opportunity Areas

* People and teambuilding
* Prepositioning
 - Domain engineering, architecting
 - Reusable everything: plans, specs, class libraries, middleware, tests, manuals
 - Integrated product, process, property, and success models
 - Tools and facilities
 - Preworking asset evolution