Initial Experiences in Software Process Modeling

Dr. Ray Madachy
Dr. Denton Tarbet
Litton Guidance and Control Systems

14th International Forum on COCOMO and Software Cost Modeling
October 26, 1999

Agenda

- Introduction and Overview
- Selected Model Descriptions
- Demonstrations
- Lessons Learned and Future Work
Introduction

- Litton GCS has used process modeling in the areas of managerial training, project and organizational modeling
- Using system dynamics to create mostly small-scale models
- SEPG is responsible for organizational analysis and training, and develops the models
- Many of these efforts are in the early stages.

Process Maturity

- GCS is SEI-certified at CMM Level 4
- Process simulation is being used to support continued improvements
- Existing process performance baselines provide leverage in developing and calibrating meaningful simulation models
Overview of Models

- Project level models
 - planning of specific projects
 - Brooks' Law and hiring issues
 - earned value model
 - requirements volatility
 - detailed (peer review) walkthrough model

- Multi-project or departmental level models
 - domain learning
 - product-line reuse processes
 - resource contention among projects

Overview of Models (cont.)

- Training applications
 - earned value techniques
 - productivity estimation
 - requirements volatility effects
 - extrapolation of project tracking indicators
 - project control

- Some of these are interactive “flight training” simulations
Characterization of Case Studies

<table>
<thead>
<tr>
<th>Phase</th>
<th>Product</th>
<th>Technology</th>
<th>Process</th>
<th>Strategy</th>
<th>Outcome</th>
<th>Long-term goals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Planning</td>
<td>Requirements</td>
<td>Architecture</td>
<td>Design</td>
<td>Development</td>
<td>Testing</td>
<td>Integration</td>
</tr>
<tr>
<td>Control and Support</td>
<td>Project Management</td>
<td>Process Improvement</td>
<td>Project Scope</td>
<td>Risk Management</td>
<td>Customer Satisfaction</td>
<td>Continuous Improvement</td>
</tr>
<tr>
<td>Training and Learning</td>
<td>Training Needs Analysis</td>
<td>Training Delivery</td>
<td>Training Evaluation</td>
<td>Training Feedback</td>
<td>Training Improvement</td>
<td></td>
</tr>
</tbody>
</table>

Earned Value Model

[Diagram of Earned Value Model]

UI Union

Gain and Control

Integrated Product Delivery

Earned Value Model
Brooks’s Law Model

Basic model assumptions:
- New personnel require training by experienced personnel to come up to speed
- More people on a project entail more communication overhead
- Experienced personnel are more productive than new personnel, on average

Project Planning and Control

- Using pilot to raise the visibility of certain planning issues and to monitor the project
- Major model elements
 - Incremental development
 - Incremental COCOMO staffing profile translated into manpower addition and transfer rates
 - Brooks’ Law effects
 - Hiring delays
 - Earned value
 - Requirements volatility
Peer Review Model

- An inspection model has been modified for other types of peer reviews, particularly walkthroughs
- Basic calibration parameters
 - nominal productivity
 - review efficiency
 - design defect density
 - code defect density
 - average design defect amplification
- Project specific parameters
 - job size
 - COCOMO effort parameter
 - schedule constraint
- Management decision parameters
 - design walkthrough practice (percent of design packages reviewed)
 - code walkthrough practice (percent of code reviewed)
Core Software Reuse Study

- A product-line reuse model is being developed to analyze the dynamics of reusing software shared among many projects
- **Problem statement**: product-line reuse is a major risk item
 - planned reuse levels are rarely met on a project
 - economics not well-known
 - large impact due to side effects of changes
 - the half-life of reuse components is usually underestimated
- A core software library is shared among projects within a specific product line
 - over a dozen projects use the core reuse library simultaneously
 - changes to the core by one project often adversely affect other projects, since side effects create new problems that often lead to cost and schedule overruns.
- The reuse process is currently being instrumented in order to parameterize the model
Lessons Learned

- Simulation enables sharing of a process vision and discussion against common models
 - Focused studies on common issues and problems have improved our management vision and actions
 - Helps managers understand the key factors in complex scenarios
 - Improves planning and management processes
- Even small models are highly valuable for providing insight into dynamic trends
 - Smaller is often better
- Simulation supports both organizational and individual learning
- Advantages to using simulation in the classroom vs. traditional methods
 - Impart information in a more meaningful and dynamic way
 - Live demonstrations keep up student interest
 - Hands-on interactivity serves to drill in the learning experience

Future Work

- Complete studies in progress
- Continue integrating simulation into process improvement initiatives
 - Raise visibility with management and identify advantages of simulation
 - Spread results to rest of organization
 - Per Barry Richmond: "10% of the organization should model, the other 90% use the models"
- Plan for model evolution
- Document the modeling process and lessons learned