CORADMO: A Model to Estimate Schedule Acceleration in Agile Projects

Dan Ingold

April 2014
Introduction

❖ Speedy development is increasingly important [1]
 ❖ Reduced time-to-market
 ❖ Response to competitive or adversarial threats

❖ Research develops CORADMO
 ❖ Constructive Rapid Application Development Model
 ❖ Updated concept of “rapid” [3], factors not phase-specific
 ❖ Uses rapid-response concepts discovered in [10]

❖ Agile adoption/perception has increased dramatically
 ❖ Developers have embraced agile approach [4]
 ❖ Early and continuous delivery of software [5]
Agile development methods have become very popular: In our recent Forrester/Dr. Dobbs Global Developer Technographics® Survey, Q3 2009, 35% of respondents stated that Agile most closely reflects their development process, with the number increasing to 45% if you expand what you include in Agile’s definition (see Figure 1). Both waterfall and iterative approaches are giving ground to much lighter, delivery-focused methods based on the principles the Agile Manifesto describes.

The older methods are not disappearing, however: 34% of the survey respondents stated that they continue to use either an iterative or waterfall development process as their primary method of software delivery.

Figure 1

Agile Adoption Has Reached Mainstream Proportions

Source: Forrester Research, Inc.
Motivation

- Agile chosen when time-certain delivery required [1, 6]
- Schedule planning done at team level [6, 7]
 - Detailed planning by iteration
 - High-level planning by release, at low-resolution
 - Cost/features may vary from plan for given schedule
- Very little literature on agile planning, in terms of achievable effort for given schedule
- Agile schedules reported to be much lower than traditional
 - Traditional schedule proportional to $\sim 3 \times \text{cube-root}(\text{effort})$ [8, 9]
 - Agile schedule appears proportional to square-root(\text{effort})
Research Questions

❖ **RQ1:** Do the durations of larger-scale agile projects remain proportional to the square-root of development effort?

❖ **RQ2:** What factors are predictive of schedule reduction or extension in agile development projects?

❖ **RQ3:** What is the quantitative effect of the application of these factors on project schedule?
Intended Research Contribution

- Clarify the relationship between development effort and schedule duration in agile projects
- Identify key factors affecting agile software project development schedule duration
- Quantify effect of each factor on schedule acceleration/deceleration
- Create a model to allow predictive modeling of schedule acceleration factors
Background
Cost/schedule Tradeoff
Cost/schedule Tradeoff

- COCOMO and other models postulate “optimal” schedule [13]
 - Many models assume convex relationship of schedule and cost

- Deviation from optimal schedule increases costs
 - Given effort in shorter schedule needs more staff or hours
 - More staff or hours decreases productivity [14]
 - Extended schedule may increase “social loafing” [15][16]

- Schedule-sensitive projects may accept increased costs
Agile Claims Improved Schedule

- Agile claims to offer better productivity, possibly lower cost [6][52]

- Specific agile practices shown to increase productivity
 - Agile tends to use more level staffing profile than phased projects
 - Higher degree of collaboration, reduced communication costs
 - Pair programming [1][17], refactoring [18]

- No research on schedule effect of larger-scale influences

- This research identifies product, process, project, people, and risk-tolerance influences on project schedule
Traditional Schedule Estimation

❖ Schedule derived as Duration = C * (Effort)^F [2][19][20]
 ❖ C is a constant in the range 2.0–4.0
 ❖ F is approximately 0.33
 ❖ Relationship is extremely well documented, 1000’s of projects [20]

❖ CORADMO/COPSEMO postulates square-root relation [2]
 ❖ Nobody would use 2 persons for 7.5 months on 16 PM effort
 ❖ More reasonable to expect 4 persons for 4 months
 ❖ Claims square-root relation breaks down between 16-64 PM

❖ Sample ISBSG data supports cube-root relationship [21]
 ❖ Curve fitting using Eureqa GA data analysis package
 ❖ Solves to approximately 4 * (Effort)^0.35
ISBSG Sample Effort vs Duration
Agile Schedule Estimation

- Literature has not reported agile duration vs effort
 - Agile proponents seem not to consider project-level schedule
 - Almost everyone suggests using cube-root relationship
 - Only (Jalote 2002) suggests square-root as “sanity check”

- This research hypothesizes square-root relation for agile

- Supported by 12-project sample data from AgileTek
 - AgileTek was small Midwest company using Architected Agile
 - Data supplied to CSSE around 2004
 - Company president died shortly thereafter, company disbanded
AgileTek Sample Effort vs Duration

AgileTek Data 2004

Effort (in person-months)

Duration (in months)

- Duration
- SQRT
- CUBRT
Reduced Schedule in Agile

- Agile claims schedule reduction as key benefit [6]
- Simple comparison of cube- and square-root curves
 - Shows 50% (low-end, 25 PM) to 10% (high-end, 360 PM)
 - Interestingly, agrees with agile claims and reports of 10-60% [12]
Cube Root vs Square Root Schedule

Square-root vs. Cube-root

Duration (in months)

Effort (in person-months)

SQR(Eff)

CUB(Eff)

50% Reduction

20% Reduction

10% Reduction
Schedule Acceleration

- Common concept of many models is “impossible zone” of schedule acceleration [19]
- Below 75% of nominal schedule effectively unachievable [13][19]
- Limited by ability to execute tasks in parallel, communications overhead [14]
The “Impossible Zone”
CORADMO Schedule Acceleration

- Research stems from RT-34 identification of key schedule acceleration factors in rapid-response contractors, agencies [10][25][26]

- Factors include:
 - Product
 - Process
 - Project [27]
 - People
 - Risk

- Well supported by NPD literature
Product Factors

- Describe the nature of the system to be developed:
 - Simplicity [26],
 - Ability to reuse existing elements [14], [26], [28],
 - Ability to defer lower-priority requirements [6],
 - Degree that models can be substituted for written documentation [6]
 - Maturity of the component technologies [29]
Process Factors

❖ Characterize the development methodology
 ❖ Concurrency of artifact development [6] [26] [31] [32] [33] [34] [35]
 ❖ Degree of process streamlining [2] [36] [37] [38] [39]
 ❖ Coverage, integration, and maturity (CIM) of tools used to support the development process [30].

❖ Concurrent processes observed to accelerate schedule
 ❖ Spiral model [31],
 ❖ Rational Unified Process [32],
 ❖ Agile methods [6]

❖ Process-streamlining
 ❖ Development Process Reengineering and Streamlining factor in the original CORADMO [2],
 ❖ Removal of bureaucratic and procedural delays; presence of enabling vs. coercive bureaucracy [36].
 ❖ Kaizen performer-identified streamlining [37], [38],
 ❖ Lean approaches such as Kanban [39].

❖ COCOMO database analysis found CIM effect 50% for coverage and 25% each for toolset integration and maturity [40]
Project Factors

- Describe execution of the development effort:
 - Project staff size [41]
 - Degree and nature of team collaboration [41][42]
 - CIM of the single-domain models, methods, processes, and tools (MMPTs) employed [30]
 - CIM of the multi-domain MMPTs used, where required [30]
People Factors

- Describe the project staff
 - General knowledge, skills, and **agility** (or, ability to thrive with the more concurrent nature of the agile/lean process) [1], [41], [43]
 - KSAs specific to the primary problem domain
 - KSAs spanning multiple problem domains, where needed;
 - Team compatibility [26], [42], [44].
Risk Acceptance Factor

- Characterizes the project stakeholders' willingness to accept rapid solutions that may require them to compromise on some expectations [1], [25]
- Stakeholders may range from highly risk-averse, to strongly risk-accepting
CORADMO Model Factors

<table>
<thead>
<tr>
<th>Accelerators/Ratings</th>
<th>Very Low</th>
<th>Low</th>
<th>Nominal</th>
<th>High</th>
<th>Very High</th>
<th>Extra High</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRODUCT FACTORS</td>
<td>1.09</td>
<td>1.05</td>
<td>1.00</td>
<td>0.96</td>
<td>0.92</td>
<td>0.87</td>
</tr>
<tr>
<td>Simplicity</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extremely complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderately complex</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderately simple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly simple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extremely simple</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Element Reuse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None (0%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimal (15%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some (30%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate (50%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Considerable (70%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensive (90%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Low-Priority Deferrals</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Never</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rarely</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sometimes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Often</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Usually</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anytime</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Models vs. Documents</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>None (0%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimal (15%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Some (30%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moderate (50%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Considerable (70%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensive (90%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Key Technology Maturity</td>
<td>>0 TRL 1,2 or >1 TRL 3</td>
<td>1 TRL 3 or > 1 TRL 4</td>
<td>1 TRL 4 or > 2 TRL 5</td>
<td>1–2 TRL 5 or >2 TRL 6</td>
<td>1–2 TRL 6</td>
<td>All > TRL 7</td>
</tr>
<tr>
<td>PROCESS FACTORS</td>
<td>1.09</td>
<td>1.05</td>
<td>1.00</td>
<td>0.96</td>
<td>0.92</td>
<td>0.87</td>
</tr>
<tr>
<td>Concurrent Operational Concept, Requirements, Architecture, V&V</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Highly sequential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mostly sequential</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 artifacts mostly concurrent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 artifacts mostly concurrent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>All artifacts mostly concurrent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fully concurrent</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Process Streamlining</td>
<td>Heavily bureaucratic</td>
<td>Largely bureaucratic</td>
<td>Conservative bureaucratic</td>
<td>Moderate streamline</td>
<td>Mostly streamlined</td>
<td>Fully streamlined</td>
</tr>
<tr>
<td>General SE tool support CIM (Coverage, Integration, Maturity)</td>
<td>Simple tools, weak integration</td>
<td>Minimal CIM</td>
<td>Some CIM</td>
<td>Moderate CIM</td>
<td>Considerable CIM</td>
<td>Extensive CIM</td>
</tr>
</tbody>
</table>
CORADMO Model Factors

<table>
<thead>
<tr>
<th>Accelerators/Ratings</th>
<th>Very Low</th>
<th>Low</th>
<th>Nominal</th>
<th>High</th>
<th>Very High</th>
<th>Extra High</th>
</tr>
</thead>
<tbody>
<tr>
<td>PROJECT FACTORS</td>
<td>1.08</td>
<td>1.04</td>
<td>1.00</td>
<td>0.96</td>
<td>0.93</td>
<td>0.90</td>
</tr>
<tr>
<td>Project size (peak # of personnel)</td>
<td>Over 300</td>
<td>Over 100</td>
<td>Over 30</td>
<td>Over 10</td>
<td>Over 3</td>
<td>≤ 3</td>
</tr>
<tr>
<td>Collaboration support</td>
<td>Globally distributed; weak comm., data sharing</td>
<td>Nationally distributed; some sharing</td>
<td>Regionally distributed; moderate sharing</td>
<td>Metro-area distributed; good sharing</td>
<td>Simple campus; strong sharing</td>
<td>Largely collocated; Very strong sharing</td>
</tr>
<tr>
<td>Single-domain MMPTs (Models, Methods, Processes, Tools)</td>
<td>Simple MMPTs, weak integration</td>
<td>Minimal CIM</td>
<td>Some CIM</td>
<td>Moderate CIM</td>
<td>Considerable CIM</td>
<td>Extensive CIM</td>
</tr>
<tr>
<td>Multi-domain MMPTs</td>
<td>Simple; weak integration</td>
<td>Minimal CIM</td>
<td>Some CIM or not needed</td>
<td>Moderate CIM</td>
<td>Considerable CIM</td>
<td>Extensive CIM</td>
</tr>
<tr>
<td>PEOPLE FACTORS</td>
<td>1.13</td>
<td>1.06</td>
<td>1.00</td>
<td>0.94</td>
<td>0.89</td>
<td>0.84</td>
</tr>
<tr>
<td>General SE KSAs (Knowledge, Skills, Agility)</td>
<td>Weak KSAs</td>
<td>Some KSAs</td>
<td>Moderate KSAs</td>
<td>Good KSAs</td>
<td>Strong KSAs</td>
<td>Very strong KSAs</td>
</tr>
<tr>
<td>Single-Domain KSAs</td>
<td>Weak</td>
<td>Some</td>
<td>Moderate</td>
<td>Good</td>
<td>Strong</td>
<td>Very strong</td>
</tr>
<tr>
<td>Multi-Domain KSAs</td>
<td>Weak</td>
<td>Some</td>
<td>Moderate or not needed</td>
<td>Good</td>
<td>Strong</td>
<td>Very strong</td>
</tr>
<tr>
<td>Team Compatibility</td>
<td>Very difficult interactions</td>
<td>Some difficult interactions</td>
<td>Basically cooperative interactions</td>
<td>Largely cooperative</td>
<td>Highly cooperative</td>
<td>Seamless interactions</td>
</tr>
</tbody>
</table>
CORADMO Model Factors

<table>
<thead>
<tr>
<th>Accelerators/Ratings</th>
<th>Very Low</th>
<th>Low</th>
<th>Nominal</th>
<th>High</th>
<th>Very High</th>
<th>Extra High</th>
</tr>
</thead>
<tbody>
<tr>
<td>RISK ACCEPTANCE FACTOR</td>
<td>1.13</td>
<td>1.06</td>
<td>1.00</td>
<td>0.94</td>
<td>0.89</td>
<td>0.84</td>
</tr>
<tr>
<td>-</td>
<td>Highly risk-averse</td>
<td>Partly risk-averse</td>
<td>Balanced risk aversion, acceptance</td>
<td>Moderately risk-accepting</td>
<td>Considerably risk-accepting</td>
<td>Strongly risk-accepting</td>
</tr>
</tbody>
</table>
Not Traditional “Agile” Factors

- CORADMO factors not principles of Agile Manifesto [51]
- Not practices of agile SDMs [6][7][52]
- Factors derived from behavioral analysis of projects exhibiting schedule acceleration [10], and from theory
ISD Agility Criteria

• Analysis of agility from “first-principles” identifies set of high-level principles distinct from specific agile SDMs [53]

• Method must contribute to at least one of the following:
 • Creation of change
 • Proaction in advance of change
 • Reaction to change
 • Learning from change

• Method component must contribute to at least one, and not detract from any:
 • Perceived economy
 • Perceived quality
 • Perceived simplicity

• Method must be continually ready—minimal time/cost to prepare for use
ISD Agility

<table>
<thead>
<tr>
<th>Model Factor</th>
<th>Creation</th>
<th>Proaction</th>
<th>Reaction</th>
<th>Learning</th>
<th>Economy</th>
<th>Quality</th>
<th>Simplicity</th>
<th>Continual Readiness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Simplicity</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Element Reuse</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Low-Priority Deferrals</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Models vs Documents</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Technology Maturity</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Concurrent Operations</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Process Streamlining</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Tool Support CIM</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Project Staff Size</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Collaboration Support</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Single-domain MMPTs</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Multi-domain MMPTs</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Team Compatibility</td>
<td>X</td>
<td></td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Risk Acceptance</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
</tr>
</tbody>
</table>
Methodology
Initial Evaluation Process

- Decomposed five factors into sub-factors, using a six-value Likert rating scale from *very low* to *extra high*

\[D = \prod F_i \sqrt{PM} \]

- Based on earlier research into
 - Project macro-risk factors [55]
 - Performance- and personnel competency-risk factors [44]
 - Agile factors as summarized by [56]

- Performed Wide-band Delphi to assign initial multiplier values [13][57]
Commercial Project Factor Analysis

<table>
<thead>
<tr>
<th>Application Type</th>
<th>Technology</th>
<th>Person Months</th>
<th>Duration (Months)</th>
<th>Duration / √PM</th>
<th>Product</th>
<th>Process</th>
<th>Project</th>
<th>People</th>
<th>Risk</th>
<th>Multiplier</th>
<th>Error %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insurance agency system</td>
<td>HTML/VB</td>
<td>34.94</td>
<td>3.82</td>
<td>0.65</td>
<td>VH</td>
<td>VH</td>
<td>XH</td>
<td>VH</td>
<td>N</td>
<td>0.68</td>
<td>5%</td>
</tr>
<tr>
<td>Scientific/engineering</td>
<td>C++</td>
<td>18.66</td>
<td>3.72</td>
<td>0.86</td>
<td>L</td>
<td>VH</td>
<td>VH</td>
<td>VH</td>
<td>N</td>
<td>0.80</td>
<td>−7%</td>
</tr>
<tr>
<td>Compliance - expert</td>
<td>HTML/VB</td>
<td>17.89</td>
<td>3.36</td>
<td>0.79</td>
<td>VH</td>
<td>VH</td>
<td>XH</td>
<td>VH</td>
<td>N</td>
<td>0.68</td>
<td>−15%</td>
</tr>
<tr>
<td>Barter exchange</td>
<td>SQL/VB/HTML</td>
<td>112.58</td>
<td>9.54</td>
<td>0.90</td>
<td>VH</td>
<td>H</td>
<td>H</td>
<td>VH</td>
<td>N</td>
<td>0.75</td>
<td>−16%</td>
</tr>
<tr>
<td>Options exchange site</td>
<td>HTML/SQL</td>
<td>13.94</td>
<td>2.67</td>
<td>0.72</td>
<td>VH</td>
<td>VH</td>
<td>XH</td>
<td>VH</td>
<td>N</td>
<td>0.68</td>
<td>−5%</td>
</tr>
<tr>
<td>Commercial HMI</td>
<td>C++</td>
<td>205.27</td>
<td>13.81</td>
<td>0.96</td>
<td>L</td>
<td>N</td>
<td>N</td>
<td>VH</td>
<td>N</td>
<td>0.93</td>
<td>−3%</td>
</tr>
<tr>
<td>Options exchange site</td>
<td>HTML</td>
<td>42.41</td>
<td>4.48</td>
<td>0.69</td>
<td>VH</td>
<td>VH</td>
<td>XH</td>
<td>VH</td>
<td>N</td>
<td>0.68</td>
<td>−1%</td>
</tr>
<tr>
<td>Time and billing</td>
<td>C++/VB</td>
<td>26.87</td>
<td>4.80</td>
<td>0.93</td>
<td>L</td>
<td>VH</td>
<td>VH</td>
<td>VH</td>
<td>N</td>
<td>0.80</td>
<td>−14%</td>
</tr>
<tr>
<td>Hybrid Web/client-server</td>
<td>VB/HTML</td>
<td>70.93</td>
<td>8.62</td>
<td>1.02</td>
<td>L</td>
<td>N</td>
<td>VH</td>
<td>VH</td>
<td>N</td>
<td>0.87</td>
<td>−15%</td>
</tr>
<tr>
<td>ASP</td>
<td>HTML/VB/SQL</td>
<td>9.79</td>
<td>1.39</td>
<td>0.44</td>
<td>VH</td>
<td>VH</td>
<td>XH</td>
<td>VH</td>
<td>N</td>
<td>0.68</td>
<td>53%</td>
</tr>
<tr>
<td>On-line billing/tracking</td>
<td>VB/HTML</td>
<td>17.20</td>
<td>2.70</td>
<td>0.65</td>
<td>VH</td>
<td>VH</td>
<td>XH</td>
<td>VH</td>
<td>N</td>
<td>0.68</td>
<td>4%</td>
</tr>
<tr>
<td>Palm email client</td>
<td>C/HTML</td>
<td>4.53</td>
<td>1.45</td>
<td>0.68</td>
<td>N</td>
<td>VH</td>
<td>VH</td>
<td>VH</td>
<td>N</td>
<td>0.76</td>
<td>12%</td>
</tr>
</tbody>
</table>
Survey Instrument

- Online survey instruments of about 22 questions
- Gone through 10+ refinement iterations
- Divided into six sections
 - Introductory and general project data
 - Product factors
 - Process factors
 - Project factors
 - People factors
 - Risk acceptance factor
- Piloted by several individuals, ready to roll out
Survey Data Sources

Here’s where you can help...
Questions
Bibliography

Bibliography

<table>
<thead>
<tr>
<th>No.</th>
<th>Reference</th>
</tr>
</thead>
</table>

40
Bibliography

