Current and Future Challenges for Systems and Software Cost Estimation

Barry Boehm, USC-CSSE
29th COCOMO-SSCM Forum
October 21, 2014
Summary

Current and future trends create challenges for systems and software cost estimation

- Mission challenges: emergent requirements, rapid change, net-centric systems of systems, COTS, clouds, apps, widgets, high assurance with agility, multi-mission systems

- USC, NPS/AFIT, DoD Systems Engineering Research Center researching ways to address challenges
 - Beginning with space systems (COSATMO models)
 - Extendable to other DoD domains

- Forum includes related COCOMO-family workshops
 - Wednesday AM: COSYSMO 3.0
 - Thursday AM: COCOMO III
Software Estimation: The Receding Horizon

IDPD: Incremental Development Productivity Decline
MBSSE: Model-Based Systems and Sw Engr.
COTS: Commercial Off-the-Shelf
SoS: Systems of Systems

Relative Productivity

Estimation Error

Unprecedented | Preceded | Component-based | COTS | Agile | SoS. Apps, Widgets, IDPD, Clouds, Security, MBSSE

Time, Domain Understanding
Current and Future Estimation Challenges

• Emergent requirements
 – Cannot prespecify requirements, cost, schedule, EVMS
 – Need to estimate and track early concurrent engineering

• Rapid change
 – Long acquisition cycles breed obsolescence
 – Need better models for incremental development

• Net-centric systems of systems
 – Incomplete visibility and control of elements

• Model, COTS, service-based, Brownfield systems
 – New phenomenology, counting rules

• Major concerns with affordability
 – US DoD: Better Buying Power 3.0
US DoD: Better Buying Power 3.0
Current draft about to become DoD policy

- Achieve affordable programs
- Achieve dominant capabilities while controlling lifecycle costs
- Incentivize productivity in industry and government
- Incentivize innovation in industry and government
- Eliminate unproductive processes and bureaucracy
- Promote effective competition
- Improve tradecraft in acquisition of services
- Improve the professionalism of the total acquisition workforce
Rapid Change Creates a Late Cone of Uncertainty
– Need evolutionary/incremental vs. one-shot development

Uncertainties in competition, technology, organizations, mission priorities
Incremental Development Productivity Decline (IDPD)

- **Example: Site Defense BMD Software**
 - 5 builds, 7 years, $100M; operational and support software
 - Build 1 productivity over 300 LOC/person month
 - Build 5 productivity under 150 LOC/PM
 - Including Build 1-4 breakage, integration, rework
 - 318% change in requirements across all builds
 - IDPD factor = 20% productivity decrease per build
 - Similar trends in later unprecedented systems
 - Not unique to DoD: key source of Windows Vista delays

- **Maintenance of full non-COTS SLOC, not ESLOC**
 - Build 1: 200 KSLOC new; 200K reused@20% = 240K ESLOC
 - Build 2: 400 KSLOC of Build 1 software to maintain, integrate
Effects of IDPD on Number of Increments

- Model relating productivity decline to number of builds needed to reach 8M SLOC Full Operational Capability
- Assumes Build 1 production of 2M SLOC @ 100 SLOC/PM
 - 20000 PM/ 24 mo. = 833 developers
 - Constant staff size for all builds
- Analysis varies the productivity decline per build
 - Extremely important to determine the incremental development productivity decline (IDPD) factor per build
Multi-Mission Systems Costing

• Product Line Engineering
 – Identify multi-mission commonalities and variabilities
 – Identify fully, partially sharable commonalities
 – Develop plug-compatible interfaces for variabilities

• Product Line Costing (COPLIMO) Parameters
 – Fractions of system fully reusable, partially reusable and cost of developing them for reuse
 – Fraction of system variabilities and cost of development
 – System lifetime and rates of change

• Product Line Life Cycle Challenges
 – Layered services vs. functional hierarchy
 – Modularization around sources of change
 – Version control, COTS refresh, and change prioritization
 – Balancing agility, assurance, and affordability
Risk-Driven Scalable Spiral Model: Increment View

Unforeseeable Change (Adapt)

Rapid Change

Agile Rebaselining for Future Increments

Deferrals

Short, Stabilized Development of Increment N

Increment N Transition/Operations and Maintenance

Future Increment Baselines

Future V&V Resources

Current V&V Resources

High Assurance

Verification and Validation (V&V) of Increment N

Unforeseeable Change (Plan)

Short Development Increments

Stable Development Increments

Foreseeable Change (Plan)

Short Development Increments

Continuous V&V
Summary

• Current and future trends create challenges for ground system cost estimation
 – Mission challenges: emergent requirements, rapid change, net-centric systems of systems, COTS, clouds, apps, widgets, high assurance with agility, multi-mission systems

DoD Systems Engineering Research Center researching ways to address challenges
 – Beginning with space systems (COSATMO models)
 – Extendable to other DoD domains

• Workshop objectives
 – Understand, prioritize ground system cost estimation needs, opportunities
 – Identify sources of expertise, data
COSATMO Concept

- Focused on current and future satellite systems
 - Accommodating rapid change, evolutionary development, Net-Centric SoSs, Families of systems, DI2E SWASe’s
 - Software, Widgets, Assets, Services, etc.
 - Recognizes new draft DoDI 5000.02 process models
 - Hardware-intensive, DoD-unique SW-intensive, Incremental SW-intensive, Accelerated acquisition, 2 Hybrids (HW-, SW-dominant)
 - Supports affordability analyses (total cost of ownership):
 - Covers full life cycle: definition, development, production, operations, support, phaseout
 - Covers full system: satellite(s), ground systems, launch
 - Covers hardware, software, personnel costs
- Extensions to cover systems of systems, families of systems
- Several PhD dissertations involved (as with COSYSMO)
 - Incrementally developed based on priority, data availability
COSATMO Tentative Model

- **Total satellite system cost =**

 System engineering cost
 + Satellite software cost
 + Satellite vehicle hardware development and production cost
 + Launch cost
 + Initial ground software cost
 + Initial ground facility cost
 + Operation & support cost

- **Model as sum of submodels relates to models in COCOMO family**
COCOMO Family of Cost Models

Software Cost Models

Other Independent Estimation Models

COCOTS 2000, COSYSMO 2005, COSoSIMO 2007

Software Extensions

Legend:
- Model has been calibrated with historical project data and expert (Delphi) data
- Model is derived from COCOMO II
- Model has been calibrated with expert (Delphi) data

Dates indicate the time that the first paper was published for the model

2014/02/26
COSATMO Submodel Starting Points

- System engineering: COSYSMO, perhaps with add-ons
- Satellite vehicle hardware development and production: Current Aerospace hardware cost model(s); exploring extensions of COSYSMO for hardware cost estimation
- Satellite vehicle, ground system software development: COCOMO II, COCOTS, perhaps with add-ons
- Launch model: similarity model, based on vehicle mass, size, orbit
- Ground system equipment, supplies: construction, unit-cost, services cost models
- Operation & support: labor-grade-based cost models, software maintenance models
Summary

• Current and future trends create challenges for systems and software cost estimation
 – Mission challenges: emergent requirements, rapid change, net-centric systems of systems, COTS, clouds, apps, widgets, high assurance with agility, multi-mission systems

• USC, NPS/AFIT, DoD Systems Engineering Research Center researching ways to address challenges
 – Beginning with space systems (COSATMO models)
 – Extendable to other DoD domains

• Forum includes related COCOMO-family workshops
 Wednesday AM: COSYSMO 3.0
 – Thursday AM: COCOMO III
COSYSMO 3.0 Context

- COSYSMO 1.0 focused on basic-project SE costs
 - 4 size drivers: #rqts, interfaces, scenarios, key algorithms
 - Weighted by complexity and added together
 - 14 cost drivers: 8 technical, 6 personnel-related
 - Calibrated to 50+ project data points from 7 companies
 - Adopted by Galorath, Price Systems, Softstar Systems

- COSYSMO 2.0 added SE-with-reuse effects to 1.0
 - Calibrated to 40+ BAE Systems project data points

- COSYSMO-REVL added rqts-volatility effects to 1.0
 - Calibrated to 25 Boeing project data points

- COSYSMO 3.0 proposes to harmonize 2.0 and REVL
 - And adding SE-for-reuse, SE-for-SoS interoperability effects
 - And revisiting COSYSMO 1.0 size and cost drivers
 - Also exploring COSYSMO for system development costing
COSYSMO 3.0 Directions
(Adapted from ARR slides [8])

Harmonize existing COSYSMO family models:

• Several factors affecting the COSYSMO cost model have been shown to be valuable in increasing estimation accuracy (terminology from [5]):
 – Reuse (simple model--SEWR) [3]
 – Reuse (with SEFR) [1]
 – Requirements volatility (SERV) [4]

The rating scales for these could be integrated into a comprehensive COSYSMO model.

Enhancement planned for inclusion:

• System-of-system considerations are hypothesized to affect system engineering costs:
 – Interoperability considerations [6]
Enhancements under discussion:

• Explore a model for total development cost based primarily on the COSYSMO parameters (Cole)
• Reduce the number of Effort Multipliers (Roedler)
Harmonized COSYSMO 3.0

Top-Level Model

\[PM_{C3} = A_{C3} \times (Size_{C3})^{E_{C3}} \times EM_{C3, j} \]

\[\sum_{j=1}^{14+} \]

Elements of the Harmonized COSYSMO 3.0 model:

- Calibration parameter \(A \)
- Interoperability
- Size model
 - eReq submodel
 - Partial development submodel
- Exponent (E) model
 - SF submodel
 - REVL submodel
- Effort multipliers EM
 - 14 unchanged EMs
 - SEFR
 - Interoperability
- Multi-subproject model
Harmonized COSYSMO 3.0 Interoperability Model

- Lane & Valerdi [6] propose that interoperability be considered a cost influence in the COSYSMO family.

- Motivation: if a system is part of a system-of-systems, then that context is reflected in interoperability requirements on the system.

- Two ways this influence could be manifested are proposed:
 - Method 1: Add a new effort multiplier
 - Method 2: Adjust the easy/medium/difficult rating scale for system interfaces (part of the Size model)

- Both Methods are shown in this presentation; presumably only one would be retained in COSYSMO 3.0.
Harmonized COSYSMO 3.0
Size Model

$$\text{Size}_{C3} = \frac{1}{\text{Prods}} \sum_{\text{Prods}} e\text{Req}(\text{Type}(\text{Prod}), \text{Difficulty}(\text{Prod})) \times$$

$$\text{PartialDevFactor}(\text{Phase}_{\text{Start}}(\text{Prod}), \text{Phase}_{\text{End}}(\text{Prod}))$$

- Prod is one of the four system engineering products that determines size in COSYSMO family (per [2]):
 - System requirement
 - System interface
 - System algorithm
 - Operational scenario

- For simplicity in model explanation, each individual Prod is considered separately

- There are two submodels:
 - Equivalent nominal requirements ("eReq")
 - Partial development
• A new, 15th effort multiplier is “System Engineering for Reuse (SEFR)”
 – I.e., is the project developing intermediate and final system engineering results to be reused on later projects?
 • Reuse for product line is one example
 – Inspired by [1]

• Assumes there is an added cost for SEFR

• Starting point for rating scale (as suggested by Boehm) is COCOMO II RUSE:
 – Low: Not for reuse
 – Nominal: Reused across project
 – High: Reused across program
 – Very High: Reused across product line
 – Extra High: Reused across multiple product lines
Adjustment for interoperability (Method 1):

- “Interoperability” might be a new, 16th effort multiplier
- Table 2 of [6] proposes this rating scale, depending on whether the project is for an existing system or a new system:

<table>
<thead>
<tr>
<th>Type of Development</th>
<th>Type of Development (based upon LISI levels)</th>
<th>Level</th>
<th>Level</th>
<th>Level</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Isolated</td>
<td>Connected</td>
<td>Functional standards employed</td>
<td>Domain standards employed</td>
<td>Enterprise standards employed</td>
</tr>
<tr>
<td>Existing systems</td>
<td>Functional standards employed</td>
<td>Domain standards employed</td>
<td>Enterprise standards employed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New system (s)</td>
<td>System-specific data</td>
<td>Documented data</td>
<td>Aligned static data</td>
<td>Aligned dynamic data</td>
<td>Harmonized data</td>
</tr>
</tbody>
</table>
Summary

• Current and future trends create challenges for systems and software cost estimation
 – Mission challenges: emergent requirements, rapid change, net-centric systems of systems, COTS, clouds, apps, widgets, high assurance with agility, multi-mission systems

• USC, NPS/AFIT, DoD Systems Engineering Research Center researching ways to address challenges
 – Beginning with space systems (COSATMO models)
 – Extendable to other DoD domains

• Forum includes related COCOMO-family workshops
 – Wednesday AM: COSYSMO 3.0
 – Thursday AM: COCOMO III
Observations

• COCOMO II challenged by different development strategies
• 2000 calibration dataset is over 14 years old
• Productivity appears to be *increasing* over time
• Levels of reported process maturity increasing in Software Engineering data
• Productivity appears to decline with multiple incremental development
COCOMO II Challenges

1995: one-size-fits-all model for 21st century software

1999: poor fit for schedule-optimized projects; CORADMO

2000: poor fit for COTS-intensive projects: COCOTS

2003: need model for product line investment: COPLIMO

2003: poor fit for agile projects: Agile COCOMO II (partial)

2012: poor fit for incremental development: COINCOMO
COCOMO II Data by 5-Year Periods

- 1970-1974: 12 projects
- 1975-1979: 36 projects
- 1980-1984: 0 projects
- 1985-1989: 17 projects
- 1990-1994: 22 projects
- 1995-1999: 105 projects
- 2000-2004: 102 projects
- 2005-2009: 47 projects
COCOMO II Data: Productivity Trends
COCOMO II Data: Process Maturity Trends
Workshop Topics

1. Consider incorporating Software Application Domains
2. Discuss additional model forms
3. Review current set of cost drivers
Super-Domains and AFCAA Productivity Types

<table>
<thead>
<tr>
<th>Super Domain</th>
<th>Productivity Types</th>
</tr>
</thead>
<tbody>
<tr>
<td>Real-Time (RT)</td>
<td>1 Sensor Control and Signal Processing</td>
</tr>
<tr>
<td></td>
<td>2 Vehicle Control</td>
</tr>
<tr>
<td></td>
<td>3 Vehicle Payload</td>
</tr>
<tr>
<td></td>
<td>4 Real Time Embedded-Other</td>
</tr>
<tr>
<td>Engineering (ENG)</td>
<td>5 Mission Processing</td>
</tr>
<tr>
<td></td>
<td>6 Executive</td>
</tr>
<tr>
<td></td>
<td>7 Automation and Process Control</td>
</tr>
<tr>
<td></td>
<td>8 Scientific Systems</td>
</tr>
<tr>
<td></td>
<td>9 Telecommunications</td>
</tr>
<tr>
<td>Mission Support (MS)</td>
<td>10 Planning Systems</td>
</tr>
<tr>
<td></td>
<td>11 Training</td>
</tr>
<tr>
<td></td>
<td>12 Software Tools</td>
</tr>
<tr>
<td></td>
<td>13 Test Software</td>
</tr>
<tr>
<td>Automated Information System (AIS)</td>
<td>14 Intelligence and Information Systems</td>
</tr>
<tr>
<td></td>
<td>Software Services</td>
</tr>
<tr>
<td></td>
<td>Software Applications</td>
</tr>
</tbody>
</table>
Additional Model Forms

• **Keep COCOMO II models?**
 – Application Composition
 – Early-Design
 – Post-Architecture

• **Should COCOMO III be backwards compatibility to COCOMO 81 & COOCMO II?**

• **New parameters, e.g.,**
 – to indicate the type of processes that are planned for the development e.g.: plan-driven, rapid development, architected agile, formal methods, COTS integration.
COCOMO II Cost Driver Review

- New cost driver values based on post-2000 data points
- Review cost drivers for
 - Relevance?
 - Additions / deletions?
- Which cost drivers need a better rating selection system that reduces rating subjectivity