
University of Southern California

Center for Systems and Software Engineering

COSATMO:
Presenting

The Harmonized COSYSMO 3.0 Model

Jim Alstad, USC-CSSE

USC Center for Systems and Software Engineering

2014 COCOMO Forum

October 22, 2014

10/22

1

University of Southern California

Center for Systems and Software Engineering

Agenda

10/22 2

Agenda:

• Introduction to COSATMO

• COSYSMO 3.0 Directions

• Harmonized COSYSMO 3.0 Model

University of Southern California

Center for Systems and Software Engineering

The Problem

10/22 3

• How much will the

total system cost?

• Is one phase being

optimized while

increasing total

cost?

• Is the system

affordable?

• Does the

acquisition comply

with the Better

Buying Power

intiatives (DoD)?

University of Southern California

Center for Systems and Software Engineering

COSATMO Objective

10/22 4

• Context:
– Current and future trends create challenges for full-system

cost estimation
• Emergent requirements, rapid change, net-centric systems of

systems, COTS, clouds, apps, widgets, high assurance with

agility, multi-mission systems

– Current development practices can minimize cost of one

phase, such as development, while raising full-system cost

• The COSATMO project is developing a modern full-

system cost model (first space systems, then other

DoD domains)
– “Constructive SATellite cost MOdel”

– Current estimating models focus on one aspect, such as

system engineering

– COSATMO will enable:
• System-level trades to be handled within a single model

• Easy customer evaluation of full-system cost

• Modern technologies to be covered

University of Southern California

Center for Systems and Software Engineering

COSATMO as a Research Umbrella

• General direction:
– Develop a full-coverage satellite system cost estimating

model

– Generalize that to additional applications

10/22 5

Specific current research
initiatives:

– COSYSMO 3.0

– COCOMO III

Research vehicles:

– My thesis

– Other theses

– Other research

University of Southern California

Center for Systems and Software Engineering

COSYSMO 3.0 Directions
(Adapted from ARR slides [8])

Harmonize existing COSYSMO family models:

• Several factors affecting the COSYSMO cost model
have been shown to be valuable in increasing
estimation accuracy (terminology from [5]):
– Reuse (simple model--SEWR) [3]

– Reuse (with SEFR) [1]

– Requirements volatility (SERV) [4]

The rating scales for these could be integrated into a
comprehensive COSYSMO model.

Enhancement planned for inclusion:

• System-of-system considerations are hypothesized
to affect system engineering costs:
– Interoperability considerations [6]

10/22 6

University of Southern California

Center for Systems and Software Engineering

COSYSMO 3.0 Directions

Part 2
Enhancements under discussion:

• Explore a model for total development cost based
primarily on the COSYSMO parameters (Cole)

• Reduce the number of Effort Multipliers (Roedler)

10/22 7

University of Southern California

Center for Systems and Software Engineering

Harmonized COSYSMO 3.0

Top-Level Model

10/22 8

Elements of the Harmonized COSYSMO 3.0 model:

• Calibration parameter A

• Interoperability

• Size model
– eReq submodel

– Partial development
submodel

• Exponent (E) model
– SF submodel

– REVL submodel

• Effort multipliers EM
– 14 unchanged EMs

– SEFR

– Interoperability

• Multi-subproject model

University of Southern California

Center for Systems and Software Engineering

Harmonized COSYSMO 3.0

Interoperability Model

10/22 9

• Lane & Valerdi [6] propose that interoperability be
considered a cost influence in the COSYSMO family

• Motivation: if a system is part of a system-of-
systems, then that context is reflected in
interoperability requirements on the system

• Two ways this influence could be manifested are
proposed:
– Method 1: Add a new effort multiplier

– Method 2: Adjust the easy/medium/difficult rating scale for
system interfaces (part of the Size model)

• Both Methods are shown in this presentation;
presumably only one would be retained in COSYSMO
3.0.

University of Southern California

Center for Systems and Software Engineering

Harmonized COSYSMO 3.0

Size Model

10/22 10

• Prod is one of the four system engineering products
that determines size in COSYSMO family (per [2]):
– System requirement

– System interface

– System algorithm

– Operational scenario

• For simplicity in model explanation, each individual
Prod is considered separately

• There are two submodels:
– Equivalent nominal requirements (“eReq”)

– Partial development

University of Southern California

Center for Systems and Software Engineering

Size Model –

eReq Submodel (1/2)
• The eReq submodel is unchanged from [2].

– Though terminology is a little different

– Also, see next slide

• The submodel computes the size of a Prod, in units
of eReq (“equivalent nominal requirements”)

• Each Prod is evaluated as being easy, nominal, or
difficult.

• Each Prod is looked up in this size table to get its
number of eReq:

10/22 11

Prod Type Easy Nominal Difficult

System Requirement 0.5 1.0 5.0

System Interface 1.1 2.8 6.3

System Algorithm 2.2 4.1 11.5

Operational Scenario 6.2 14.4 30.0

University of Southern California

Center for Systems and Software Engineering

Size Model –

eReq Submodel (2/2)
Adjustment for interoperability (Method 2):

• [6] proposes (in its Table 3) that the table that defines
the easy/medium/hard rating scale for a system
interface (from [2]) be adjusted by adding a new row
(the last row in this table):

10/22 12

Easy Medium Difficult

Simple messages and protocols
Moderate communication
complexity

Complex protocol(s)

Uncoupled Loosely coupled Tightly coupled

Strong consensus among
stakeholders

Moderate consensus among
stakeholders

Low consensus among
stakeholders

Well behaved Predictable behavior Emergent behavior

Domain or enterprise

standards employed

Functional standards

employed

Isolated or connected

systems with few or no

standards

University of Southern California

Center for Systems and Software Engineering

Size Model –

Partial Development Submodel (1/2)
• The following new partial development submodel is

proposed
– It is a generalization of the Generalized Reuse Framework

model [1] (Generalized2 Reuse Framework?)

– An alternate submodel is discussed below

• A Partial Development Factor from 0.0 to 1.0 is
assigned based on the starting and ending phase of
development on Prod
– The phases: Requirements and Architecture, Detailed

Design, Implementation, Integration & Test, Operational Test
& Evaluation

– A Prod may enter late, typically because it’s being reused

– A Prod may exit early, typically because this is an IR&D
project

– PartialDevFactor = 1.0 for a complete development life cycle

10/22 13

PartialDevFactor(PhaseStart (Prod), PhaseEnd (Prod))

University of Southern California

Center for Systems and Software Engineering

Size Model –

Partial Development Submodel (2/2)
• PartialDevFactor(PhaseStart, PhaseEnd) might be

approximated by:

– But there might be some overhead for early entry or early

exit

Alternate PartialDevFactor submodel:

• Use results from Generalized Reuse Model [1]
– Restricted to Prods that either start at the beginning or

finish at the end

• Would be employed if data didn’t validate the
proposed model

10/22 14

University of Southern California

Center for Systems and Software Engineering

Harmonized COSYSMO 3.0

Exponent Model

10/22 15

• Exponent model is unchanged from Peña [4, 9]

EC3 = ECOSYSMO + SFRV

• ECOSYSMO = 1.06 [2]

• SFRV per next slide

University of Southern California

Center for Systems and Software Engineering

Exponent – SF Submodel

• Where

– REVL = The % of the baseline requirements that is expected to change over

the system lifecycle – see next slide

– C = Scale factor constant = 0.05 (calibration parameter)

– wvl = aggregate lifecycle phase volatility weighting factor

• And:

– wl = weighting factor for each life cycle phase1 (determined by experts [4])

– Θl = % of total requirements changes per life cycle phase (taken from data

from 25 projects [4])

– l = life cycle phases

16

SFRV = C ×
REVL

100

æ

è
ç

ö

ø
÷× wvl

æ

è
ç

ö

ø
÷

 
opstranopstrantesttestdevdevconcepconcepv wwwww __1 

Expected REVL is

rated as Very Low,

Low, Moderate, High,

and Very High

1Life Cycle Phases: Conceptualize, Development, Operational Test and Evaluation, and Transition to Operation

Adapted from slide 11 of [9]

10/22

University of Southern California

Center for Systems and Software Engineering

Exponent –

REVL Submodel – Ranking

17

Developed based on surveys of experienced S/W and Systems Engineers (N =38) [4]

Very

Low

Low Moderate High Very

High

Weight

Characteristic Rating
< 1.5 >1.5-2.5 >2.5-3.5 >3.5-4.5 > 4.5

System requirements baselined and

agreed to by key stakeholders

Fully

1

Mostly

2

Generally

3

Somewhat

4

No

Agreement

5

26%

Level of uncertainty in key

customer requirements, mission

objectives, and stakeholder needs

Very

Low

1

Low

2

Moderate

3

High

4

Very High

5
22%

Number of co-dependent systems

with influence on system

requirements

Very

Low

1

Low

2

Moderate

3

High

4

Very High

5
16%

Strength of your organization’s

requirements development process

and level of change control rigor

Very

High

1

High

2

Moderate

3

Low

4

Very Low

5
8%

Precedentedness of the system , use

of mature technology

Very

High

1

High

2

Moderate

3

Low

 4

Very Low

5
9%

Stability of stakeholders'

organizations (developer,

customer)

Very

High

1

High

2

Moderate

3

Low

 4

Very Low

5
14%

Experience level of the systems

engineering team in requirements

analysis and development

Very

High

1

High

2

Moderate

3

Low

4

Very Low

5
6%

Adapted from slide 14 of [9]

10/22

Have been

modified a little

in Harmonized

COSYSMO 3.0.

University of Southern California

Center for Systems and Software Engineering

Exponent –

REVL – Ranking to Percentage

18

Development Conceptualize Operational
Test & Eval

Transition to
Operations

R
EV

L
(%

 o
f

b
as

el
in

e
re

q
u

ir
em

en
ts

 c
h

an
ge

s)

6%

22%

38%

54%

Adapted from slide 29 of [9]

• Based on data from 25 projects [4]
10/22 18

University of Southern California

Center for Systems and Software Engineering

Harmonized COSYSMO 3.0

Effort Multiplier Model (1/3)

10/22 19

• 14 effort multipliers unchanged from COSYSMO 1.0
(Table 16 of [2]):

• Rating levels and rating scales unchanged

Driver Name Data Item

Requirements understanding Subjective assessment of the system requirements

Architecture understanding Subjective assessment of the system architecture

Level of service requirements Subjective difficulty of satisfying the key performance parameters

Migration complexity Influence of legacy system (if applicable)

Technology risk Maturity, readiness, and obsolescence of technology

Documentation to match life cycle

needs
Breadth and depth of required documentation

and Diversity of

installations/platforms
Sites, installations, operating environment, and diverse platforms

of Recursive levels in the design Number of applicable levels of the Work Breakdown Structure

Stakeholder team cohesion Subjective assessment of all stakeholders

Personnel/team capability Subjective assessment of the team’s intellectual capability

Personnel experience/continuity Subjective assessment of staff consistency

Process capability CMMI level or equivalent rating

Multisite coordination Location of stakeholders and coordination barriers

Tool support Subjective assessment of SE tools

University of Southern California

Center for Systems and Software Engineering

Harmonized COSYSMO 3.0

Effort Multiplier Model (2/3)

10/22 20

• A new, 15th effort multiplier is “System Engineering
for Reuse (SEFR)”
– I.e., is the project developing intermediate and final system

engineering results to be reused on later projects?

• Reuse for product line is one example

– Inspired by [1]

• Assumes there is an added cost for SEFR

• Starting point for rating scale (as suggested by
Boehm) is COCOMO II RUSE:
– Low: Not for reuse

– Nominal: Reused across project

– High: Reused across program

– Very High: Reused across product line

– Extra High: Reused across multiple product lines

University of Southern California

Center for Systems and Software Engineering

Harmonized COSYSMO 3.0

Effort Multiplier Model (3/3)

10/22 21

Adjustment for interoperability (Method 1):

• “Interoperability” might be a new, 16th effort
multiplier

• Table 2 of [6] proposes this rating scale, depending
on whether the project is for an existing system or a
new system:

Type of

Development

Level

Very Low Low Nominal High Very High

Existing systems

(based upon LISI

levels)

Isolated Con-

nected

Functional

standards

employed

Domain

standards

employed

Enterprise

standards

employed

New system (s)

(based upon LCIM

conceptual levels)

System-

specific

data

Docu-

mented

data

Aligned

static data

Aligned

dynamic

data

Harmon-

ized data

University of Southern California

Center for Systems and Software Engineering

Harmonized COSYSMO 3.0

Multi-Subproject Model

10/22 22

• Sometimes a project consists of multiple
subprojects
– Where the subprojects use significantly different effort

multipliers.

– However, scale factors should apply to the project as a
whole.

• Example:
– Part of a project is SEFR; the rest is not

• The equation below is adapted from Equation 2 of
[10] and is based on the Multiple Modules model of
COCOMO II
– When applicable, it supersedes the Top-Level Model

University of Southern California

Center for Systems and Software Engineering

Bibliography (1/2)

1. “A Generalized Systems Engineering Reuse Framework and its Cost
Estimating Relationship”, Gan Wang, Garry J Roedler, Mauricio Pena,
and Ricardo Valerdi, submitted for publication.

2. “The Constructive Systems Engineering Cost Model (COSYSMO)”,
Ricardo Valerdi (PhD Dissertation), 2005.

3. “Estimating Systems Engineering Reuse with the Constructive
Systems Engineering Cost Model (COSYSMO 2.0)”, Jared Fortune
(PhD Dissertation), 2009.

4. “Quantifying the Impact of Requirements Volatility on Systems
Engineering Effort”, Mauricio Pena (PhD Dissertation), 2012.

5. “Life Cycle Cost Modeling and Risk Assessment for 21st Century
Enterprises”, Barry Boehm, Jo Ann Lane, Supannika Koolmanojwong,
Richard Turner (presentation), April 29, 2014.

6. "System Interoperability Influence on System of Systems Engineering
Effort", Jo Ann Lane, Ricardo Valerdi, unpublished.

7. “COSYSMO Extension as a Proxy Systems Cost Estimation”
(presentation), Reggie Cole, Garry Roedler, October 23, 2013.

10/22 23

University of Southern California

Center for Systems and Software Engineering

Bibliography (2/2)

8. “COSATMO: Developing Next-Generation Full-Coverage Cost
Models” (presentation), Jim Alstad, USC CSSE Annual Research
Review, April 29, 2014.

9. "Quantifying the Impact of Requirements Volatility on Systems
Engineering Effort” (presentation), Mauricio Peña, Ricardo Valerdi,
October 18, 2012 (COCOMO Forum)

10. “Cost Model Extensions to Support Systems Engineering Cost
Estimation for Complex Systems and Systems of Systems”, Jo Ann
Lane, CSER 2009.

10/22 24

University of Southern California

Center for Systems and Software Engineering

Backup Charts

10/22 25

University of Southern California

Center for Systems and Software Engineering

The Solution

10/22 26

Interim DoDI 5000.02, November 25, 2013

 5

(2) Capability Requirements Process

(a) All acquisition programs respond to validated Capability Requirements. Figure 1

illustrates the interaction between the requirements process and the acquisition process. The

Chairman of the Joint Chiefs of Staff, with the advice of the Joint Requirements Oversight

Council (JROC), will assess and validate joint military requirements for MDAP and MAIS

programs, and less-than-MDAP or MA IS programs de sig nated either as “JROC Interest” or

“Joint Capabilities Board Interest.” W hen JROC va lidation authority is de legated in accordance

with the Joint Capabilities Integration and Development System (JCIDS) process in Chairman of

the Joint Chiefs of Staff Instruction 3170.01H (Reference (j)), DoD Components and others will

use variations of the JCIDS to validate their requirements. The chair of the Investment Review

Board is the validation authority for DBS Capability Requirements.

(b) Leadership of the acquisition and budget processes will be involved as advisors to

the validation authority during consideration of initial or adjusted validation of capability

requirements to ensure coordination across the three processes.

(c) The titles of Capability Requirements documents supported by JCIDS vary by the

maturity of the capability gap to solution proposal and can vary by product classification. When

the titles vary from the most typical Initial Capabilities Document (ICD), Capability

Development Document (CDD), or Capability Production Document, the text will use the

Materiel
Solution
Analysis
Phase

Technology Maturation &

Risk Reduction Phase

Initial

Capabilities

Document*

Materiel
Development
Decision

Engineering & Manufacturing

Development Phase

B

Production &

Deployment Phase

= Milestone Decision

= Decision Point

Legend

* Or Equivalent Approved/ Validated Requirements Document.

Left: 0
Right: 1.8
Top: 0
Bottom: 1.6

Dev.
RFP

Release
Decision

Point

C

Operations & Support

Phase

Requirements
Authority

Review of AoA
Results

= Requirements Document

= Requirements Authority
Review

Draft

Capability

Development

Document*

A

Disposal

Capability

Development

Document*

Capability

Production

Document*

Figure 1. Illustration of the Interaction between the

Capability Requirements Process and the Acquisition Process
Example acquisition process (DoDI 5000.02)

COSATMO

assists

acquirers and

developers

during these

phases

(highest

payoff during

early phases)

COSATMO estimates

the cost for these

phases

University of Southern California

Center for Systems and Software Engineering

COSATMO Concept

• Focused on current and future satellite systems
– Accommodating rapid change, evolutionary development, Net-

Centric SoSs, Families of systems, DI2E SWASe’s

• Software, Widgets, Assets, Services, etc.

– Recognizes new draft DoDI 5000.02 process models

• Hardware-intensive, DoD-unique SW-intensive, Incremental SW-

intensive, Accelerated acquisition, 2 Hybrids (HW-, SW-

dominant)

– Supports affordability analyses (total cost of ownership):

• Covers full life cycle: definition, development, production,

operations, support, phaseout

• Covers full system: satellite(s), ground systems, launch

• Covers hardware, software, personnel costs

• Extensions to cover systems of systems, families of systems

• Several PhD dissertations involved (as with COSYSMO)
– Incrementally developed based on priority, data availability

10/22 27

University of Southern California

Center for Systems and Software Engineering

Approach

10/22 28

• Technical approach:

– Develop a satellite system cost model

• Divide overall system cost into segments. For each segment:

– Identify an existing cost model (one or more) that covers it, or

– Develop a new cost model for the segment

• For any new cost models, follow the well-developed COCOMO-

family methodology:

– Identify cost drivers

– Obtain expert opinion on impact of cost driver

– Combine that statistically with cost data from actual systems

– Iterate as needed

– Generalize to other DoD systems

• The near-term activities, then, are:

– Convene groups of experts to identify cost drivers and

impacts

– Identify sources of data

University of Southern California

Center for Systems and Software Engineering

Near-Term Work Approach

• Developing a segment model typically consists of

two topics (which are somewhat independent):
1. Identifying cost drivers and determining which are most

important (compare slides 9-11)

2. Gathering actual, total segment costs for multiple systems,

including actual values of cost driver

– After 1 & 2 are complete, data can be analyzed and the

segment cost model can be finalized

• Segments (see slides 7-8) that seem to have the

highest benefit/cost ratio for near-term work on

either or both topics:
– Total engineering cost (all through EMD phase—slides 3, 7)

– Operation & support

– Other ground segments

10/22 29

University of Southern California

Center for Systems and Software Engineering

Segments of Satellite System Cost

• Total satellite system cost [tied to slide 3 phases] =
 System engineering cost [EMD]

+ Satellite software cost [EMD]

+ Satellite vehicle hardware development [EMD] and production

[Prod] cost

+ Launch cost [Deploy]

+ Initial ground software cost [EMD]

+ Initial ground custom equipment cost [EMD]

+ Initial ground facility (buildings, communications, computers,

COTS software) cost [EMD]

+ Operation & support cost [Deploy, O&S]

• Updated at GSAW (Feb 2014)

• Model as sum of submodels is new structure in

COCOMO family

 10/22 30

University of Southern California

Center for Systems and Software Engineering

COSATMO Segment Tentative Models

• System engineering: COSYSMO, perhaps with add-ons

• Satellite vehicle hardware development and production: Current

Aerospace hardware cost model(s); exploring extensions of

COSYSMO for hardware cost estimation

• Satellite vehicle, ground system software development:

COCOMO II, COCOTS, perhaps with add-ons

• Launch model: similarity model, based on vehicle mass, size,

orbit

• Ground system equipment, supplies: construction, unit-cost,

services cost models

• Operation & support: labor-grade-based cost models, software

maintenance models

10/22 31

University of Southern California

Center for Systems and Software Engineering

Key Overall Satellite System

Cost Drivers
• Most Important:

– Complexity, Architecture Understanding, Mass, Payload TRL

level/Technology Risk, and Requirements Understanding.

• Important:
– Reliability, Pointing Accuracy, Number of Deployables, Number of

Key Sponsors, Data Rate, and Security Requirements for

Communications.

• Determined at COCOMO Forum (Oct 2013)

10/22 32

University of Southern California

Center for Systems and Software Engineering

Ground System Segment

Development (1/2)
• Determined at GSAW (Feb 2014)

• Ground system-wide cost drivers

– Most important: Accreditation (information assurance, etc),

Required security

– Also important: # satellites*

• Initial software cost drivers

– Required data throughput

– Generally handled by COCOMO II, COCOTS, COPLIMO

10/22 33

*Indicates a size measure

University of Southern California

Center for Systems and Software Engineering

Ground System Segment

Development (2/2)
• Ground custom equipment cost drivers

– Most important: Amount of new development required, # of
custom equipment sites*, Required site availability &
reliability, Required site security

– Also important: # driving requirements*

• Ground facility cost drivers
– Most important: # facilities*, location of facilities (especially

US vs foreign), # ground RF terminals*

– Also important: Facility “reuse”

• Operation and support cost drivers
– Most important: # years of operation*, # FTE staff (with

labor mix)*

– Also important: Size of software maintained*, Leased line
cost*, level of automation

10/22 34

*Indicates a size measure

University of Southern California

Center for Systems and Software Engineering

Medium-Term Issues

Model-changing issues:
1. Use of small satellites vs more traditional satellites vs

mixed

2. Ownership model (own vs leased services, etc)

3. Is support for multiple missions required?

Develop a phased cost model.

Is this a reasonable generalization to other domains:

• Total system cost =
 System engineering cost

+ Embedded software cost

+ Hardware development cost through first article

+ Deployment cost

+ Initial logistics software cost

+ Initial logistics custom equipment cost

+ Initial logistics facility cost

+ Operation & support cost?

10/22 35

University of Southern California

Center for Systems and Software Engineering

Generalized Reuse Framework*

Top Level Part 1
• The Generalized (Systems Engineering) Reuse

Framework extends the COSYSMO family of cost
estimating models to account for the influence of
reusing system engineering artifacts and developing
them for such reuse

• Under this model, all system engineering effort falls
under one of these types:
– Development with Reuse

– Development for Reuse

10/22 36

*Material in this section is taken from [1].

University of Southern California

Center for Systems and Software Engineering

Generalized Reuse Framework:

Development for Reuse
• Development for Reuse produces artifacts intended

for later reuse on projects. A completed DFR artifact
may (intentionally) not be completely developed, so
that it will be in one of these DFR states:
– Conceptualized for Reuse (e.g., Concept of Operations

document)

– Designed for Reuse (e.g., component detailed design)

– Constructed for Reuse (e.g., integrated component)

– Validated for Reuse (e.g., validated component)

10/22 37

University of Southern California

Center for Systems and Software Engineering

Generalized Reuse Framework:

Development with Reuse
• Development with Reuse is project development,

with reusable artifacts being brought into the
product
– A special case: zero reusable artifacts

• Each reusable artifact is included in one of these
DWR states of maturity:
– New (i.e., not reused)

– Re-implemented (through requirements & architecture)

– Adapted (through detailed design)

– Adopted (through implementation)

– Managed (through system verification & validation)

10/22 38

University of Southern California

Center for Systems and Software Engineering

Generalized Reuse Framework:

Top Level Part 2
• A system engineering project to be estimated will

consist of these types of effort:
– Development with Reuse; or

– Development for Reuse; or

– Both, with the DFR effort typically producing some artifacts
for use in the DWR effort.

• A project’s estimated total system engineering effort,
then, is estimated as:
– Estimated DFR effort + estimated DWR effort

• DFR effort is estimated via an extended COSYSMO
model
– DWR effort, likewise

10/22 39

University of Southern California

Center for Systems and Software Engineering

Generalized Reuse Framework:

COSYSMO (1/2)
• COSYSMO [2] starts by computing the “size” of a

system engineering project, in units of eReq
(“equivalent nominal requirements”)

• These artifacts are considered in the size: system
requirements, system interfaces, system-critical
algorithms, and operational scenarios.

• Each artifact is evaluated as being easy, nominal, or
difficult.

• Each artifact is looked up in this size table to get its
number of eReq, and then these are summed to get
the system size:

10/22 40

Artifact Type Easy Nominal Difficult

System Req’ts 0.5 1.0 5.0

System Interfaces 1.1 2.8 6.3

System Algs 2.2 4.1 11.5

Op Scenarios 6.2 14.4 30.0

University of Southern California

Center for Systems and Software Engineering

Generalized Reuse Framework

COSYSMO (2/2)

• Size is raised to an exponent, representing
diseconomy of scale, and then multiplied by factors
for 14 effort multipliers and a calibration constant.

• This results in the following equation for a
COSYSMO estimate of effort in person-months:

10/22 41

PMCOSYSMO = A × (SizeCOSYSMO)E × EM j

j=1

14

Õ

SizeCOSYSMO = size(art type, art difficulty)
artifacts

å

University of Southern California

Center for Systems and Software Engineering

Generalized Reuse Framework:

DFR Model Equations
• A DFR estimate adjusts each artifact’s size

contribution by considering its DFR state according
to this table:

10/22 42

PMDFR = ADFR × (SizeDFR)
EDFR × EMDFR j

j=1

14

Õ

SizeDFR = size(art type, art difficulty)
artifacts

å × DFRStateFactor(art state)

DFR State (Degree of Development) DFR State Factor

Conceptualized for Reuse 36.98%

Designed for Reuse 58.02%

Constructed for Reuse 79.15%

Validated for Reuse 94.74%

University of Southern California

Center for Systems and Software Engineering

Generalized Reuse Framework:

DWR Model Equations
• A DWR estimate adjusts each artifact’s size

contribution by considering its DWR state according
to this table:

10/22 43

PMDWR = ADWR × (SizeDWR)
EDWR × EMDWRj

j=1

14

Õ

SizeDWR = size(art type, art difficulty)
artifacts

å × DWRStateFactor(art state)

DWR State (Maturity) DWR State Factor

New 100.00%

Re-Implemented 66.73%

Adapted 56.27%

Adopted 38.80%

Managed 21.70%

University of Southern California

Center for Systems and Software Engineering

COSATMO/COSYSMO Generalized

Reuse Framework Topic
• Can model be generalized/simplified by just looking

at which phases of development an artifact needs to
be put through? (Alstad)
– I.e., just develop a per-phase cost model

• Presumably separate parameters for DFR & DWR

– Would need a common set of phases for DFR & DWR.

– Would remove restrictions that DFR development always
starts from scratch and that DWR development always goes
to product completion.

10/22 44

University of Southern California

Center for Systems and Software Engineering

Summary of 2013 Meetings
• 24 September at Aerospace

– Presentations on satellite cost estimation

• Notably, Lisa Colabella’s survey of cost data gathering for

Operations & Support (see backup chart)

• 24 October at COCOMO Forum

– Started official COSATMO modeling effort

– Got 1st draft of most important cost drivers, list of experts

• 18 November at JPL

– Presentations on their satellite cost models, including

some operations modeling

• 18 December at SMC

– Obtained pointers to some of their operation & support

data

10/22 45

University of Southern California

Center for Systems and Software Engineering

Summary of 2014 Meetings
• 26 February at Ground Systems Arch. Workshop

– Obtained segments, cost drivers for ground systems

• 19 March at Annual SERC Technical Review

– Presented status

• 9 April at BAE Systems

– Private meeting on directions for COSYSMO 3.0

• 29 April at CSSE Annual Research Review

– General coverage

– Detailed discussion on directions for COSYSMO 3.0

– Kick off COSYSMO 3.0 Working Group

• 29 July at CMU

– SERC RT-113/RT-119 meeting

– Overview of COSATMO

10/22 46

University of Southern California

Center for Systems and Software Engineering

COQUALMO

1998

COCOMO 81

1981

COPROMO

1998

COSoSIMO

2007

Legend:

Model has been calibrated with historical project data and expert (Delphi) data

Model is derived from COCOMO II

Model has been calibrated with expert (Delphi) data

COCOTS

2000

COSYSMO

2005

CORADMO

1999,2012

iDAVE

2004
COPLIMO

2003

COPSEMO

1998

COCOMO II

2000

DBA COCOMO

2004

COINCOMO

2004,2012

COSECMO

 2004

Software Cost Models

Software Extensions

Other Independent

Estimation Models

Dates indicate the time that the first paper was published for the model

COTIPMO

2011

AGILE C II

2003

COCOMO Family of Cost Models

10/22 47

University of Southern California

Center for Systems and Software Engineering

My Tentative Research Objectives

• Provide improved cost estimation capabilities for the portions of and

changing needs of space systems that are most needed and most

currently tractable, including availability of calibration data. For

example, SMC's main current concern is better estimation of post-

deployment operations and sustainment costs.

• Develop a framework of cost estimation methods best suited for the

various aspects of current and future space systems and other

domains, such as the use of unit costing for production, acquisition,

and consumables costs, and the use of activity-based costing for

operations and sustainment labor costs.

• Prioritize the backlog of estimation models to be developed next.

10/22 48

University of Southern California

Center for Systems and Software Engineering

Determine Model

Needs

Step 1

USC-CSSE Modeling Methodology

Analyze existing

literature

Step 2

Perform Behavioral

analyses

Step 3
Define relative

significance,data,

ratings

Step 4

Perform expert-

judgment Delphi

assessment,

formulate a priori

model

Step 5

Gather project

data

Step 6

Determine

Bayesian A-

Posteriori model

Step 7 Gather more data;

refine model

Step 8

 - concurrency and feedback implied

10/22 49

University of Southern California

Center for Systems and Software Engineering

Current and Future Estimation Challenges

• Emergent requirements

– Cannot prespecify requirements, cost, schedule, EVMS

– Need to estimate and track early concurrent engineering

• Rapid change

– Long acquisition cycles breed obsolescence

– Need better models for incremental development

• Net-centric systems of systems

– Incomplete visibility and control of elements

• Model, COTS, service-based, Brownfield systems

– New phenomenology, counting rules

• Major concerns with affordability

– Multi-mission ground system challenges

10/22 50

University of Southern California

Center for Systems and Software Engineering

Rapid Change Creates a Late Cone of Uncertainty
– Need evolutionary/incremental vs. one-shot development

Feasibility

Concept of

Operation

Rqts.

Spec.

Plans

and

Rqts.

Product

Design

Product

Design

Spec.

Detail

Design

Spec.

Detail

Design

Devel. and

Test

Accepted

Software

Phases and Milestones

Relative

Cost Range x

4x

2x

1.25x

1.5x

0.25x

0.5x

0.67x

0.8x

Uncertainties in competition,

technology, organizations,

mission priorities

10/22 51

University of Southern California

Center for Systems and Software Engineering

Multi-Mission Ground Systems Costing
• Product Line Engineering

– Identify multi-mission commonalities and variabilities

– Identify fully, partially sharable commonalities

– Develop plug-compatible interfaces for variabilities

• Product Line Costing (COPLIMO) Parameters

– Fractions of system fully reusable, partially reusable and

cost of developing them for reuse

– Fraction of system variabilities and cost of development

– System lifetime and rates of change

• Product Line Life Cycle Challenges

– Layered services vs. functional hierarchy

– Modularization around sources of change

– Version control, CTS refresh, and change prioritization

– Balancing agilty, assurance, and affordability

10/22 52

University of Southern California

Center for Systems and Software Engineering

Software Estimation: The Receding Horizon

Unprece-

dented
Prece-

dented

Component-

based
COTS Agile

SoS. Apps, Widgets, IDPD,

Clouds, Security, MBSSE

A B C D

Relative

Productivity

Estimation

Error

Time, Domain Understanding

IDPD: Incremental Development Productivity Decline

MBSSE: Model-Based Systems and Sw Engr.

COTS: Commercial Off-the-Shelf

SoS: Systems of Systems

10/22 53

