niversity of Southern California .
Center for Software Engineering

Next Generation Trends:
Systems and Software Engineering

Barry Boehm, USC-CSSE
http:/csse.usc.edu

CSSE Annual Research Review
April 15, 2015

4/15/2015



University of Southern California .
Center for Software Engineering

Motivation

- “What helped me most in becoming a good hockey
player was learning to skate to where the puck was
going, rather than where it was or where it had been.”

— Wayne Gretzky, NHL Hall of Fame

- “Reflection in action,” or asking, “How could we have
done our last project better?” is actually skating to
where the puck has been.

— It is very valuable, but needs to be balanced with anticipating
the future

— For example, don’ t stop at CMMI Level 4

4/15/2015 2



iversity of Southern California
Center for Software Engineering

Outline

= The Future of Systems and Software

— Original 2005 presentation
— 8 surprise-free trends; 2 wild-card trends

— Changes 2005-2010; 2010-2015
— Systems and software engineering
opportunities and challenges

- Conclusions: Continuous Adaptation
— Research, acquisition, staffing/education

4/15/2015



niversity of Southern California .
Center for Software Engineering

The Future of Systems and Software: 2005

- Eight surprise-free trends

. Increasing integration of SyskE and SwE

User/Value focus

Software Criticality and Dependability

Rapid, Accelerating Change

Distribution, Mobility, Interoperability, Globalization
Complex Systems of Systems

COTS, Open Source, Reuse, Legacy Integration
Computational Plenty

PNOU R WM

-  Two wild-card trends
9. Autonomy Software
10.Combinations of Biology and Computing

4/15/2015



University of Southern California .
Center for Software Engineering

2010 Trends Largely Missed in 2005

- Nanotechnology megasensor-intensive smart systems
- Search and mining of ultralarge data aggregations

- Software implications of multicore chips

- Rapid growth of cloud computing, service-orientation
- Rapid growth of social networking technologies

4/15/2015



niversity of Southern California .
Center for Software Engineering

The Future of Systems and Software: 2010

= Eight surprise-free trends

Rapid, Accelerating Change

Software Criticality and Dependability
Complexity; Global/Mobile Systems of Systems
COTS, Open Source, Services, Legacy Integration
Smart Systems; Mining huge volumes of data
User Evolution and End Value Focus
Computational Plenty and Multicore Chips
Increasing integration of SyskE and SwE

ONOIOR LN

-  Two wild-card trends
9. Autonomy Software
10.Combinations of Biology and Computing

4/15/2015 6



niversity of Southern California .
Center for Software Engineering

2015 Trends Largely Missed in 2010

From Cyber-Physical Systems to Cyber-Physical-
Human Systems

Proliferation of Apps: Full Interoperability

- Agile Methods Meet Complex Trusted Systems
Proliferation of Autonomous Systems

- Changes in Labor Force Supply and Demand

« Advanced Human Prosthetics
4/15/2015



O N ORwDbA

niversity of Southern California .
Center for Software Engineering

The Future of Systems and Software: 2015

Reliable Autonomy and Cyber-Physical-Human Systems
Rapid Change: Set-Based Design and Requirements
Balancing Multi-Stakeholder Objectives, Qualities
Complexity; Global/Mobile Systems of Systems

COTS, Open Source, Services, Legacy Integration
Smart Systems; Mining huge volumes of data

Advanced Human Prosthetics

Lifelong Education: Early STEM; T-Shaped Software
Engineers

4/15/2015 8



g g R€liable Autonomy and
Human-Systems Integration

- Balance human oversight of autonomous agents with
agent-based oversight of human deficiencies

— Autonomy failure modes: agent cooperation; agent
spoofing; big-data spoofing; self-modifying systems;
positive feedback stability

— Need for multidiscipline-stakeholder collaboration support

— Need integrated modeling of human-cyber-physical roles,
performance

- HSI methods, processes and tools. Growing need
with more complex systems, especially autonomy.

— What is the tradespace analysis associated with human vs.
machine executive control of system capabilities and how is
it determined?

4/15/2015



. University of Southern California Tru Sted Syste m S : Syste m i c

Center for Software Engineering
Assurance

* Modeling, analyzing, and assuring semi-autonomous and autonomous systems

— How to model and validate autonomy requirements?
* Rules of engagement
* Resilient and adaptive responses
* Human roles and interventions

 Managing traceability at full scale: requirements, architecture, design, models,

implementation, tests, ops logs, etc.

— Can argumentation structures be engineered to achieve scale?
* How to validate argumentation structures?
* How to link argumentation structures with proof structures, models, analytics?

 Systems engineering data

—  What is the nature of the tooling required to manage the “big data” of a full SE process?
« Kinds of data (what’ s in the “SEEN" — the SE Engineering Notebook): informal, formal,
traceability, models, etc.

— How to provide effective “analytic visibility” to Program Office personnel?

 Open source in systems

— What kinds of evidence need to be produced to support confident adoptions?
* The full access — and the ability to insert (as a stakeholder) any additional quality steps into the
build — creates benefit that could counter the negatives (loss of control, visibility to adversaries).

e Curriculum
— How can SE principles be effectively inserted into existing software engineering and ECE

curricula?
* This could broaden the population of students exposed to the techniques and tools of SE.

4/15/2015 10



niversity of Southern California .
Center for Software Engineering

Architected Agile Approach

* Uses Scrum of Scrums approach
— Up to 10 Scrum teams of 10 people each
— Has worked for distributed international teams
— Going to three levels generally infeasible
- General approach shown below
— Often tailored to special circumstances

3~ 10 sprints
o’ &',
/'/ \\
2-12weeks 1month 1month imonth 1month 1~ 6months
Archtecting | o Al — Release | Release 1 | Release 1
Sprint Zero PRIE | 2 S Sprint | BetaTest | Operations
Release 2 e
Architecting | Sprint 1 | Sprint2 |
Sprnt Zero .

4/15/2015

1"



sty O€1-based Design & Rqts.

- Anticipate future directions of change

— Areas of uncertainty in requirements
- Long-lead items, low TRLSs, independently-evolving SoS elements

— Previous-systems change areas

— Architect system around sources of change

— Include mechanisms for early validation

— Prioritize capabilities to keep within budget
- Create tradespace via ranges of quality requirements

— Example: 1-second response time desired; 4 seconds acceptable
- Keep sets of options open as late as possible

— Be responsive to emerging threats and technology opportunities
- Facilitated by tools to generate large numbers of options

— And computer models to evaluate them on hundreds of
parameters

4/15/2015 12



Camierror Sareware Enaineering PrOJjeCts A and B
Major Rework Sources
Change processing over 1 person-month = 152 person-hours

Category Project A Project B
Extra long messages 3404+626+443+328+244= 5045
Network failover 2050+470+360+160= 3040
Hardware-software interface 620+200= 820 | 1629+513+289+232+166= 2832
Encryption algorithms 1247+368= 1615
Subcontractor interface 1100+760+200= 2060
GUI revision 980+730+420+240+180 =2550
Data compression algorithm 910
External applications interface 770+330+200+160= 1460
COTS upgrades 540+380+190= 1110 7414302+221+197= 1461
Database restructure 690+480+310+210+170= 1860
Routing algorithms 494+198= 692
Diagnostic aids 360 477+318+184= 979
R TOTAL: 13620 13531

0
TOTZTTZUTU Valuing Flexibility via TOC



1 e Importance of SQ Tradeoffs

Major source of DoD system overruns
- SQs have systemwide impact
— System elements generally just have local impact
- SQs often exhibit asymptotic behavior
— Watch out for the knee of the curve

- Best architecture is a discontinuous function of SQ
level
— “Build it quickly, tune or fix it later” highly risky
— Large system example below

$100M ——

Required
Architecture:
Custom: many
cache processors
$50M D E— e Se—
Original
1 - Architecture:
Original Cost Modified
Client-Server
Original Spec After Prototyping
| | L~ |
I | I | |
1 2 3 4 5
Response Time (sec) 14

4/15/2019



divesiyof sounen caloria oing COMMIt With Confidence:
Evidence-Based Decision Milestones

Evidence provided by developer and validated by independent experts that:

If the system 1s built within the specified architecture envelope, 1t will
— Satisfy the specified operational concept and requirements
» (Capability, interfaces, level of service, and evolution
— Be buildable by the developers within the budgets and schedules in the plan
— Generate a viable return on investment in mission performance

— Generate satisfactory outcomes for all of the success-critical stakeholders
Shortfalls in evidence are uncertainties and risks

— Should be resolved or covered by risk management plans
Assessed 1n increasing detail at major decision milestones

— Uncertainty-managed level of evidence detail

— Serves as basis for stakeholders’ commitment to proceed

— Serves to synchronize and stabilize concurrently engineered elements

Evidence for assurance links requirements, architecture, implementation, ops

— Dynamic traceability greatly facilitates evolution with assurance

Can be used to strengthen current schedule- or event-based reviews
4/15/2015 15



niversity of Southern California .
Center for Software Engineering

The Future of Systems and Software: 2015

1. Reliable Autonomy and Cyber-Physical-Human Systems
2. Rapid Change: Set-Based Desigh and Requirements

3~ Balancing Multi-Stakeholder Objectives, Qualities

4. Complexity; Global/Mobile Systems of Systems

COTS, Open Source, Services, Legacy Integration
Smart Systems; Mining huge volumes of data

Advanced Human Prosthetics

Lifelong Education: Early STEM; T-Shaped Software
Engineers

© N O

4/15/2015 16



| esnasarencaons Example of SQ Value Conflicts:
Security IPT

Single-agent key distribution; single data copy
— Reliability: single points of failure

Elaborate multilayer defense
— Performance: 50% overhead; real-time deadline problems

Elaborate authentication
— Usability: delays, delegation problems; GUI complexity

Everything at highest level
— Modifiability: overly complex changes, recertification

4/15/2015 17



| University of Southern California ]
enter for Software Engineering

3. Complexity and Global Software-Intensive
Systems of Systems (SISOS)

- Lack of integration among stovepiped

systems causes

— Unacceptable delays in service

— Uncoordinated and conflicting plans

— Ineffective or dangerous decisions

— Inability to cope with fast-moving events

- Increasing SISOS benefits
— See first; understand first; act first
— Network-centric operations coordination
— Transformation of business/mission potential
— Interoperability via Integrated Enterprise Architectures

4/15/2015 18



University of Southern California .
Center for Software Engineering

Future DoD Challenges: Systems of Systems

Rebaseline/
AdJustment FCR,

r B OLR,
[ Develop Operation
— 5 5
ICandl(.iate Supphrr CO-typd X\ : ﬁ\ﬁ AAM
roposal /& :

FXR

SoS-Level | Exploration Valuation

l
l
Sour.ce — . asibility - : ,
Selection andidate Supplielﬂ Info/' I : [ 1] |
— S 1] ool
og. ~ ogra | | ofal | lofe. ke D5
Systemx P l Develop Operation N ' pperation I O[,erallm Operatibpn | e e g. .: .:
| ;! || ll l I
° . .
IFC‘iC , ’ DiRcl OC‘R(:Z
SyStem C o0 4 Exploration Valuati_!m N Architeclln I Develop bperatlon o .o °
© . e [ okw,  ofw, ok,
System B eo 4 Exploration V.;lluation Ar(‘ﬁtecting Develop Operatié-nTo o0
*RA IiRA OéAl
System A o0 4 Exploration Valuation Architecting Develop Operation

4/15/2015



University of Southern California .
Center for Software Engineering

Enterprise and Systems of Systems
Grand Challenge

Strategy: - %,
o N 5 \ I? ‘v Q
*Model: Develop MPTs that allow quick and insightful /’f (sts‘;::kf’g::;: e 1
odeling of enterprises/SoSs so that the effects of changes in &, e ‘
olicies, practices, components, interfaces, and technologies =~ # "8~
can be anticipated and understood in advance of their NS s S i
implementation e

Edge Nodes

*Example Need: SoS Change Impact Analysis

Acquire: Develop MPTs that allow insight into enterprise/SoS acquisition approaches in the face of significant
uncertainty and change to minimize unintended consequences and unforeseen risks

*Evolve: Develop MPTs that facilitate evolving and growing an enterprise/SoS, including insight into different
architectural and integration approaches that facilitate evolution in the face of uncertainty and change in how
an enterprise/SoS is employed, the technologies available to realize it, and the environment in which it exists

Verify: Develop MPTs that allow the properties of an enterprise/SoS to be anticipated, monitored and

confirmed during development and evolution, including an enterprise/SoS which includes legacy systems that
are in operation while development and evolution are underway

4/15/2015 20



CHSHED Livestyorsguner catre eering @ 1 RI-USC SysML Buildin
Blocks for Cost Modelin

* Implemented reusable SysML building blocks

— Based on SoS/COSYSMO SE cost (effort)
modeling work by Lane, Valerdi, Boehm, et al.

* Successfully applied building blocks to
healthcare SoS case study

* Provides key step towards affordability trade studies
involving diverse “-ilities”

[
[
Laboratory I
Aspect Formula Calculated
System \ 1 0 Effort
Patient . S " SoSE effort Effort = 38.55*[(( SoScr / S0Stg)* (S0Stusg)"* * EMsos.c) + (SoSam / S0Steg) 4041
CoustRuCTI YA I retA Co5t Mo s oG 10 e ooy )
Management  Rioardo Yalerd, Universiy of Southern Calfomia (Equation 5) (S0S1eg) ™ * EMsosam*OSF)] /152
g ENTER SIZE PARAMETERS FOR SYSTEM OF INTEREST = 38.554((50 /52) * (52)'%5% 2.50) + (20/52)*(52)1%% 0.47 * 10%)] / 152
System Easy | Nominal | Diffioult -
of System Requiremnents Pharmacy System | Effort = 38 55%(1.0+CSsosap) * ((SoScsated CStmgsose)* (CSmsose) ™* EMescamsoss) + | 22.02
[ of Systern Interfaces effort (CSa0a505/CSTreqsose) * (CStreqsoss) * * EMcsacasos] /152
of Algorithms (Equation 4) =38.55 *[ (1.15) * ((50/70)*(70)*% * 1.06 + (20/70) * (70)*°*0.72] / 152
Health Care of Operational Seenarios Laboratory Effort = 38.55%[(1.0+CSsosag) * ((S0Scsuiod Cmagsoss)* (Cmmasosd) ™" EMcscamsos) * | 1955
. < fyns . s
Network SELECT COST PARAMETERS FOR SYSTEM OF INTEREST System effort (CSoonsos/CSregsase) * (CSrgsoss) fg\éksnmsosl 152
=7 T (Equation 4) =38.55 *[ (1.15) * ((50/50)*(50)* % * 1.06 + 0] / 152
[Architecture Understandin 1.00 Imaging System | Effort = 38.55[(1.0+CSesug) * ((S0Scsatad Crmsgoss)” (C S treggoss) * EMcs.crwsoss) + 1955
Cevel of Senvice Requirsments effort (CSnonsos/CSTreqsose) * (CStreqsose) ™ * EMcspansos] /152
nggaut‘m G ?pk\exﬁ gg (Equation 4) =38.55 *[ (1.15) * ((50/50)*(50)** * 1.06 + 0] / 152
DEE e ‘o New infrastructure | Effort = 38.55*EM?*(size)' %9/152 3343
[# and diversity of installations platform ] component effort =3855%1.0* (100" /152
# of recursive levels in the design 12 ] (Equation 1)
[Etakenolder team cohesion 00 §
Personnel/team capabilt Ju] Total Effort: 134.96
Pharmacy 00
Process capability 00
Svstem ultsite coordination H
Tool support 1.00 L~
composite effort multiplier —

21



niversity of Southern California .
Center for Software Engineering

The Future of Systems and Software: 2015

Reliable Autonomy and Cyber-Physical-Human Systems
Rapid Change: Set-Based Design and Requirements
Balancing Multi-Stakeholder Objectives, Qualities
Complexity; Global/Mobile Systems of Systems

COTS, Open Source, Services, Legacy Integration
Smart Systems; Mining huge volumes of data

Advanced Human Prosthetics

8.E>L|felong Education: Early STEM; T-Shaped Software
Engineers

NoO o AN

4/15/2015 22



University of Southern California .
Center for Software Engineering

SysE and SwE Education Implications

- Current Sysk and SwE students will be practicing into the 2050s.
Their education should consider the following:

Early education: Systems thinking, STEM analysis and synthesis

Anticipating future trends and preparing students to deal with them;
Capitalizing on information technology to enable the delivery of just-in-time
and web-based education;

Monitoring current principles and practices and separating timeless principles
from outdated practices;

Participating in leading-edge software engineering research and practice and
incorporating the results into the curriculum;

Packaging smaller-scale educational experiences in ways that apply to large-
scale projects;

Helping students learn how to learn, through state-of-the-art analyses, future-
oriented educational games and exercises, and participation in research; and

Offering lifelong learning opportunities for systems engineers who must
update their skills to keep pace with the evolution of best practices

4/15/2015 23



