
USC

C S E University of Southern California
Center for Software Engineering

4/15/2015 1

Barry Boehm, USC-CSSE
http://csse.usc.edu

CSSE Annual Research Review
April 15, 2015

Next Generation Trends:
 Systems and Software Engineering

USC

C S E University of Southern California
Center for Software Engineering

Motivation

•  “What helped me most in becoming a good hockey
player was learning to skate to where the puck was
going, rather than where it was or where it had been.”
–  Wayne Gretzky, NHL Hall of Fame

•  “Reflection in action,” or asking, “How could we have
done our last project better?” is actually skating to
where the puck has been.
–  It is very valuable, but needs to be balanced with anticipating

the future
–  For example, don’t stop at CMMI Level 4

4/15/2015 2

USC

C S E University of Southern California
Center for Software Engineering

4/15/2015 3

Outline
•  The Future of Systems and Software

– Original 2005 presentation
– 8 surprise-free trends; 2 wild-card trends

– Changes 2005-2010; 2010-2015
– Systems and software engineering

opportunities and challenges

•  Conclusions: Continuous Adaptation
– Research, acquisition, staffing/education

USC

C S E University of Southern California
Center for Software Engineering

4/15/2015
4

The Future of Systems and Software: 2005

•  Eight surprise-free trends
1.  Increasing integration of SysE and SwE
2.  User/Value focus
3.  Software Criticality and Dependability
4.  Rapid, Accelerating Change
5.  Distribution, Mobility, Interoperability, Globalization
6.  Complex Systems of Systems
7.  COTS, Open Source, Reuse, Legacy Integration
8.  Computational Plenty

•  Two wild-card trends
9.  Autonomy Software
10. Combinations of Biology and Computing

USC

C S E University of Southern California
Center for Software Engineering

2010 Trends Largely Missed in 2005

•  Nanotechnology megasensor-intensive smart systems

•  Search and mining of ultralarge data aggregations

•  Software implications of multicore chips

•  Rapid growth of cloud computing, service-orientation

•  Rapid growth of social networking technologies

4/15/2015 5

USC

C S E University of Southern California
Center for Software Engineering

4/15/2015 6

The Future of Systems and Software: 2010

•  Eight surprise-free trends
1.  Rapid, Accelerating Change
2.  Software Criticality and Dependability
3.  Complexity; Global/Mobile Systems of Systems
4.  COTS, Open Source, Services, Legacy Integration
5.  Smart Systems; Mining huge volumes of data
6.  User Evolution and End Value Focus
7.  Computational Plenty and Multicore Chips
8.  Increasing integration of SysE and SwE

•  Two wild-card trends
9.  Autonomy Software
10. Combinations of Biology and Computing

USC

C S E University of Southern California
Center for Software Engineering

2015 Trends Largely Missed in 2010
•  From Cyber-Physical Systems to Cyber-Physical-

Human Systems

•  Proliferation of Apps: Full Interoperability

•  Agile Methods Meet Complex Trusted Systems

•  Proliferation of Autonomous Systems

•  Changes in Labor Force Supply and Demand

•  Advanced Human Prosthetics
4/15/2015 7

USC

C S E University of Southern California
Center for Software Engineering

The Future of Systems and Software: 2015

1.  Reliable Autonomy and Cyber-Physical-Human Systems
2.  Rapid Change: Set-Based Design and Requirements
3.  Balancing Multi-Stakeholder Objectives, Qualities
4.  Complexity; Global/Mobile Systems of Systems
5.  COTS, Open Source, Services, Legacy Integration
6.  Smart Systems; Mining huge volumes of data
7.  Advanced Human Prosthetics
8.  Lifelong Education: Early STEM; T-Shaped Software

Engineers

4/15/2015 8

USC

C S E University of Southern California
Center for Software Engineering Reliable Autonomy and

Human-Systems Integration
•  Balance human oversight of autonomous agents with

agent-based oversight of human deficiencies
–  Autonomy failure modes: agent cooperation; agent

spoofing; big-data spoofing; self-modifying systems;
positive feedback stability

–  Need for multidiscipline-stakeholder collaboration support
–  Need integrated modeling of human-cyber-physical roles,

performance

•  HSI methods, processes and tools. Growing need
with more complex systems, especially autonomy.
–  What is the tradespace analysis associated with human vs.

machine executive control of system capabilities and how is
it determined?

4/15/2015 9

USC

C S E University of Southern California
Center for Software Engineering

Trusted Systems: Systemic
Assurance

•  Modeling, analyzing, and assuring semi-autonomous and autonomous systems
–  How to model and validate autonomy requirements?

•  Rules of engagement
•  Resilient and adaptive responses
•  Human roles and interventions

•  Managing traceability at full scale: requirements, architecture, design, models,
implementation, tests, ops logs, etc.

–  Can argumentation structures be engineered to achieve scale?
•  How to validate argumentation structures?
•  How to link argumentation structures with proof structures, models, analytics?

•  Systems engineering data
–  What is the nature of the tooling required to manage the “big data” of a full SE process?

•  Kinds of data (what’s in the “SEEN” – the SE Engineering Notebook): informal, formal,
traceability, models, etc.

–  How to provide effective “analytic visibility” to Program Office personnel?

•  Open source in systems
–  What kinds of evidence need to be produced to support confident adoptions?

•  The full access – and the ability to insert (as a stakeholder) any additional quality steps into the
build – creates benefit that could counter the negatives (loss of control, visibility to adversaries).

•  Curriculum
–  How can SE principles be effectively inserted into existing software engineering and ECE

curricula?
•  This could broaden the population of students exposed to the techniques and tools of SE.

4/15/2015 10

USC

C S E University of Southern California
Center for Software Engineering

Architected Agile Approach

•  Uses Scrum of Scrums approach
–  Up to 10 Scrum teams of 10 people each
–  Has worked for distributed international teams
–  Going to three levels generally infeasible

•  General approach shown below
–  Often tailored to special circumstances

4/15/2015 11

USC

C S E University of Southern California
Center for Software Engineering Set-based Design & Rqts.

•  Anticipate future directions of change
–  Areas of uncertainty in requirements

•  Long-lead items, low TRLs, independently-evolving SoS elements
–  Previous-systems change areas
–  Architect system around sources of change
–  Include mechanisms for early validation
–  Prioritize capabilities to keep within budget

•  Create tradespace via ranges of quality requirements
–  Example: 1-second response time desired; 4 seconds acceptable

•  Keep sets of options open as late as possible
–  Be responsive to emerging threats and technology opportunities

•  Facilitated by tools to generate large numbers of options
–  And computer models to evaluate them on hundreds of

parameters

4/15/2015 12

USC

C S E University of Southern California
Center for Software Engineering Projects A and B  

Major Rework Sources
Change processing over 1 person-month = 152 person-hours

10/27/2010 Valuing Flexibility via TOC
13

Category Project A Project B
Extra long messages 3404+626+443+328+244= 5045

Network failover 2050+470+360+160= 3040

Hardware-software interface 620+200= 820 1629+513+289+232+166= 2832

Encryption algorithms 1247+368= 1615

Subcontractor interface 1100+760+200= 2060

GUI revision 980+730+420+240+180 =2550

Data compression algorithm 910

External applications interface 770+330+200+160= 1460

COTS upgrades 540+380+190= 1110 741+302+221+197= 1461

Database restructure 690+480+310+210+170= 1860

Routing algorithms 494+198= 692

Diagnostic aids 360 477+318+184= 979

TOTAL: 13620 13531

USC

C S E University of Southern California
Center for Software EngineeringImportance of SQ Tradeoffs

Major source of DoD system overruns
•  SQs have systemwide impact

–  System elements generally just have local impact
•  SQs often exhibit asymptotic behavior

–  Watch out for the knee of the curve
•  Best architecture is a discontinuous function of SQ

level
–  “Build it quickly, tune or fix it later” highly risky
–  Large system example below

4/15/2015 14

USC

C S E University of Southern California
Center for Software Engineering Commit with Confidence: 

Evidence-Based Decision Milestones
•  Evidence provided by developer and validated by independent experts that:
•  If the system is built within the specified architecture envelope, it will

–  Satisfy the specified operational concept and requirements
•  Capability, interfaces, level of service, and evolution

–  Be buildable by the developers within the budgets and schedules in the plan
–  Generate a viable return on investment in mission performance
–  Generate satisfactory outcomes for all of the success-critical stakeholders

•  Shortfalls in evidence are uncertainties and risks
–  Should be resolved or covered by risk management plans

•  Assessed in increasing detail at major decision milestones
–  Uncertainty-managed level of evidence detail
–  Serves as basis for stakeholders’ commitment to proceed
–  Serves to synchronize and stabilize concurrently engineered elements

•  Evidence for assurance links requirements, architecture, implementation, ops
–  Dynamic traceability greatly facilitates evolution with assurance

Can be used to strengthen current schedule- or event-based reviews
4/15/2015 15

USC

C S E University of Southern California
Center for Software Engineering

The Future of Systems and Software: 2015

1.  Reliable Autonomy and Cyber-Physical-Human Systems
2.  Rapid Change: Set-Based Design and Requirements
3.  Balancing Multi-Stakeholder Objectives, Qualities
4.  Complexity; Global/Mobile Systems of Systems
5.  COTS, Open Source, Services, Legacy Integration
6.  Smart Systems; Mining huge volumes of data
7.  Advanced Human Prosthetics
8.  Lifelong Education: Early STEM; T-Shaped Software

Engineers

4/15/2015 16

USC

C S E University of Southern California
Center for Software EngineeringExample of SQ Value Conflicts:

Security IPT
•  Single-agent key distribution; single data copy

–  Reliability: single points of failure

•  Elaborate multilayer defense
–  Performance: 50% overhead; real-time deadline problems

•  Elaborate authentication
–  Usability: delays, delegation problems; GUI complexity

•  Everything at highest level
–  Modifiability: overly complex changes, recertification

4/15/2015 17

USC

C S E University of Southern California
Center for Software Engineering

4/15/2015 18

3. Complexity and Global Software-Intensive  
Systems of Systems (SISOS)

•  Lack of integration among stovepiped
systems causes
–  Unacceptable delays in service
–  Uncoordinated and conflicting plans
–  Ineffective or dangerous decisions
–  Inability to cope with fast-moving events

•  Increasing SISOS benefits
–  See first; understand first; act first
–  Network-centric operations coordination
–  Transformation of business/mission potential
–  Interoperability via Integrated Enterprise Architectures

USC

C S E University of Southern California
Center for Software Engineering

Source
Selection

●
 ●
●

 Valuation Exploration Architecting Develop Operation

 Valuation Exploration Architecting Develop Operation

 Valuation Exploration Architecting Develop Operation

 Operation Develop Operation Operation Operation

System A

System B

System C

System x

LCO-type
Proposal &
Feasibility

Info

 Candidate Supplier/
Strategic Partner n ●

 ●
●

Candidate Supplier/
Strategic Partner 1

SoS-Level Valuation Exploration Architecting Develop

FCR1 DCR1

 Operation

OCR1

Rebaseline/
Adjustment FCR1 OCR2

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

• • •

OCRx1

FCRB DCRB OCRB1

FCRA DCRA

FCRC DCRC OCRC1

OCRx2 OCRx3 OCRx4 OCRx5

OCRC2

OCRB2

OCRA1

Future DoD Challenges: Systems of Systems

19 4/15/2015

USC

C S E University of Southern California
Center for Software Engineering

Enterprise and Systems of Systems  
Grand Challenge

Strategy:

• Model: Develop MPTs that allow quick and insightful
modeling of enterprises/SoSs so that the effects of changes in
policies, practices, components, interfaces, and technologies

can be anticipated and understood in advance of their
implementation

• Example Need: SoS Change Impact Analysis

• Acquire: Develop MPTs that allow insight into enterprise/SoS acquisition approaches in the face of significant

uncertainty and change to minimize unintended consequences and unforeseen risks

• Evolve: Develop MPTs that facilitate evolving and growing an enterprise/SoS, including insight into different
architectural and integration approaches that facilitate evolution in the face of uncertainty and change in how
an enterprise/SoS is employed, the technologies available to realize it, and the environment in which it exists

• Verify: Develop MPTs that allow the properties of an enterprise/SoS to be anticipated, monitored and
confirmed during development and evolution, including an enterprise/SoS which includes legacy systems that

are in operation while development and evolution are underway

4/15/2015 20

USC

C S E University of Southern California
Center for Software Engineering

21

GTRI-USC SysML Building
Blocks for Cost Modeling

 •  Implemented reusable SysML building blocks
–  Based on SoS/COSYSMO SE cost (effort)

modeling work by Lane, Valerdi, Boehm, et al.
•  Successfully applied building blocks to

healthcare SoS case study
•  Provides key step towards affordability trade studies

involving diverse “-ilities”

4/15/2015

USC

C S E University of Southern California
Center for Software Engineering

The Future of Systems and Software: 2015

1.  Reliable Autonomy and Cyber-Physical-Human Systems
2.  Rapid Change: Set-Based Design and Requirements
3.  Balancing Multi-Stakeholder Objectives, Qualities
4.  Complexity; Global/Mobile Systems of Systems
5.  COTS, Open Source, Services, Legacy Integration
6.  Smart Systems; Mining huge volumes of data
7.  Advanced Human Prosthetics
8.  Lifelong Education: Early STEM; T-Shaped Software

Engineers

4/15/2015 22

USC

C S E University of Southern California
Center for Software Engineering

SysE and SwE Education Implications

•  Current SysE and SwE students will be practicing into the 2050s.
Their education should consider the following:
–  Early education: Systems thinking, STEM analysis and synthesis
–  Anticipating future trends and preparing students to deal with them;
–  Capitalizing on information technology to enable the delivery of just-in-time

and web-based education;
–  Monitoring current principles and practices and separating timeless principles

from outdated practices;
–  Participating in leading-edge software engineering research and practice and

incorporating the results into the curriculum;
–  Packaging smaller-scale educational experiences in ways that apply to large-

scale projects;
–  Helping students learn how to learn, through state-of-the-art analyses, future-

oriented educational games and exercises, and participation in research; and
–  Offering lifelong learning opportunities for systems engineers who must

update their skills to keep pace with the evolution of best practices

4/15/2015 23

