The Thai Cost and Process Models

Pongtip Aroonvatanaporn
Monvorath Phongphaibul
Agenda

- Motivation
- Model Calibration
- Thai COCOMO
- Model Usage
- Conclusion
Agenda

• Motivation
 – Problems
 – Goals

• Model Calibration

• Thai COCOMO

• Model Usage

• Conclusion
Motivation

• Initiated by the National Anti-Corruption Commission of Thailand
 – Reduce corruption
 – Make project costs explicit
 – Create a fair business between government and private sectors

• Project in conjunction with Ministry of Information and Communications Technology
 – Looking for a costing process and model

• Sources and reasoning behind costs
Problems

• Software is abstract
 – Multiple factors affecting effort and costs

• Lack of estimation expertise within government agencies
 – Rely heavily on proposal of private sectors

• Lack of standards
 – Cost model
 – Costing process
Goals

• Government Sector
 – A standardized way for cost estimation
 – Budgeting
 – Sources and reasoning for software project costs

• Private Sector
 – A standard way for estimating project proposals
 – Improved project and risk management

• Industry
 – Promote Thai software industry
 – Competitive edge
Agenda

• Motivation

• Model Calibration
 – Problems
 – Methodology

• Thai COCOMO

• Model Usage

• Conclusion
Calibration Problems

• Lack of documentation
 – Not enough detail
 – May not reflect actual system

• Unusable project data
 – Incomplete project data
 – Critical data not logged properly (i.e. effort, costs, complexity, etc.)
 – Unusable for model calibration
The Calibration Plan

• **1st stage**
 – Focused on refining impact factors

• **2nd stage (current stage)**
 – Pilot with selected government agencies
 – Collect preliminary data

• **3rd stage**
 – Roll out
 – Model validation
1st stage

• **Focus:** Refine cost factors

• **Gather project data for calibration**
 – Attempted to gather usable data
 – Analyzed available data

• **Expert judgment**
 – Surveyed experts and developers
 • Round 1: distributed 17 surveys, 9 surveys returned, 7 valid surveys
 • Round 2: distributed 500 surveys, about 200 surveys returned, less than 100 valid surveys
 – Focus groups of about 20 experts
 – Focused on critical factors
2nd Stage (Current)

- **Focus:** Collect data

- **Pilot with selected government agencies**
 - Active in IT development
 - Sufficient IT knowledge

- **Collect data from these government agencies with the ICT Cost Estimation system**
 - Performing the calibration using the pilot projects

- **Validate the model with experts**
3rd Stage

• **Focus:** Roll out to broader government agencies

• **Continue data collection**
 – With ICT Cost Estimation system

• **Potentially making the system to adjust the model automatically**
 – Collect estimation and actual data
 – Automatic + expert calibration

• **Model validation with real projects**
Agenda

• Motivation
• Model Calibration
• Thai COCOMO
 – The Model
 – Model Testing
• Model Usage
• Conclusion
Model Adjustments

• Adjustments to the number of parameters
 – Scale Factors: 5 -> 3
 – Cost Drivers: 17 -> 7

• Add one additional cost driver
 – Explicitly define “Security”
 – Experimenting on impact of security factor

• Combined personnel capabilities and experiences parameters
 – Thai roles can be ambiguous and vaguely defined

• Redefined 1 scale factor
Thai COCOMO

- Post-architecture estimation model
- Takes
 - Size
 - Ratings for each parameter
- Estimates effort/resources required to complete project

Cost Drivers

Product
- Reliability
- Database Size
- Product Complexity
- Developed for Reusability
- Documentation Match to Life-Cycle Needs

Platform
- Execution Time Constraint
- Main Storage Constraint
- Platform Volatility

Scale Factors
- Precedentededness
- Development Flexibility
- Architecture / Risk Resolution
- Team Cohesion
- Process Maturity

Personnel
- Analyst Capability
- Programmer Capability
- Personnel Continuity
- Applications Experience
- Platform Experience
- Language and Tool Experience

Project
- Use of Software Tools
- Multisite Development
- Required Development Schedule

Very Low | **Low** | **Nominal** | **High** | **Very High** | **Extra High**
---|---|---|---|---|
Post-architecture estimation model
Takes
- Size
- Ratings for each parameter
Estimates effort/resources required to complete project

Cost Drivers

Product
- Reliability
- Database Size
- Product Complexity
- Developed for Reusability
- Documentation Match to Life-Cycle Needs

Platform
- Execution Time Constraint
- Main Storage Constraint
- Platform Volatility

Scale Factors
- Precedentededness
- Development Flexibility
- Architecture / Risk Resolution
- Team Cohesion
- Process Maturity

Personnel
- Analyst Capability
- Programmer Capability
- Personnel Continuity
- Applications Experience
- Platform Experience
- Language and Tool Experience

Project
- Use of Software Tools
- Multisite Development
- Required Development Schedule

Very Low	**Low**	**Nominal**	**High**	**Very High**	**Extra High**

Thai Cost and Process Models

4/14/15
Model Testing

• Tested with 3 sample projects
 – Large, > 10 Million THB
 – Medium, 1-5 Million THB
 – Small, < 1 Million THB

• Based on completed projects
 – Requirement objectives
 – System design and prototypes
 – User survey

• Results were inconclusive
 – Compared to budget, not actual costs (unavailable)

• Using pilot testing instead
Test Results

<table>
<thead>
<tr>
<th>Budget</th>
<th>Estimated</th>
<th>% Acc</th>
<th>Rationale (Lesson learned)</th>
</tr>
</thead>
</table>
| Small < 1 million THB | 792 K | 731 K | 92% | • Requirements were very detailed
• Sizing with function point was realistic
• Costs mainly related to development of software system |
| Medium 1 – 5 Million THB | 4.73 M | 7.56 M | -60% | • 2nd phase of the project
• Considered as software modifications
• Actually reimplementation of entire project |
| Large > 10 Million THB | 14.25 M | 28.96 M | -200% | • Required effort was small
• Project consists of 22 consultants/experts. Majority of costs.
• No specific project personnel in requirements. |
Agenda

• Motivation
• Model Calibration
• Thai COCOMO

• Model Usage
 – ICT Standard Cost Estimation
 – Software Intellectual Property Valuation

• Conclusion
ICT Cost Estimation Project

• By the Ministry of Information and Communications Technology (MICT)

• Two parts
 – Costing process and guidelines
 – Cost estimation system

• System for estimating software project costs
 – Hardware/software costs
 – Development effort
 – Personnel costs
 – Other costs

• Used by all government agencies
 – A standardized way to estimate cost
 – Cost tracking and control
COCOMO Framework

Templates and Guidelines

1. Conceptual Design
2. Requirements Gathering
3. System Design

COCOMO Inputs
- Functional requirements
- Non-functional requirements
- High-level component design
- Personnel capabilities and experience
- Scale factors and cost drivers analysis

COCOMO Model
4.1 Manual Estimation
4.2 Automated Estimation
5. Effort
6. Project Estimation

Thai Cost and Process Models
Costing Process

• Requirement gathering and preliminary designs
 – Templates and guidelines
 – Required information for estimating costs

• Sizing
 – Function point
 – A standard way to determine complexity and relative sizes
 – Forces details of requirements

• Costing
 – Use COCOMO for development effort
 – Convert into monetary by estimating personnel
Intellectual Property Valuation Project

• By the Software Industry Promotion Agency (SIPA)

• Two parts
 – Develop methodology for evaluating value of software intellectual property
 – Develop a system for executing the methodology

• Potential collaboration with Korea Technology Finance Corporation (KOTEC)
Valuation Model

• **Risk-based analysis**
 – 34 risks indicators in 4 dimensions
 • Management
 • Technology prospects
 • Market feasibility
 • Business and profit prospects
 – Requires expert analysis and judgment

• **Costing**
 – Estimated costs of production during proposal or developmental stage
 – Reverse engineering costs with COCOMO when released to the market but cost information is unavailable
 – Actual costs when there are costs accounting recorded

• **Discount cash flow**
 – For value estimation and prediction
 – Risk analysis used to determine discount factor
Publications

• Book
 – Guidelines and concepts for software intellectual property valuation

• Technical Report
 – Aroonvatanaporn, P. and Phongphaibul, M. “Reverse Engineering Software Costs with COCOMO II to Support Software Valuation”
Agenda

- Motivation
- Model Calibration
- Thai COCOMO
- Model Usage
- Conclusion
Conclusion

• Developed a standard costing process and framework
 – Model adjustment is still in progress
 – Evolving model

• Model being used/tested with pilot projects

• Model implemented in two systems
 – ICT Standard Cost Estimation System
 – IP Valuation System for Software
Lessons Learned

• People tend to find ways around costs
• COCOMO is suited for development effort
 – Project costs must be explicitly software development
 – Clearly specify development team personnel
 – Don’t go overboard with consultants
• People need to be educated about requirements
 – Correctly stating requirements
 – Details are important
Thank You