
COOSS: An initial COCOTS Extension Model for 
Estimating Cost of Integrating Open Source 

Software Components

Lin Shi, Celia Chen, Qing Wang, Barry Boehm
Center of Systems and Software Engineering, University of Southern California

Institute of Software Chinese Academy of Sciences



Agenda







● No cost
● Extensive community of 

developers involved
● Source code is readily 

available
● Constantly being updated
● Problems/bugs are quickly 

rectified

● Need very experienced 
staff to integrate

● Vulnerable to threats
● Potential high support and 

maintenance costs
● Need right level of 

expertise to manage
● Environment/platform 

incompatible

Advantages Disadvantages



Top 10 OSS integration challenges found in literature reviews

OSS



Cost

- Support Cost
- Learning Cost
- Maintenance Cost

Trade-offs



How to estimate the costs?



COCOTS
- COnstructive COTS integration cost 

model
- Extensive for COCOMO

- Focuses on COTS integration into 
in-house applications

- Has 4 levels of effort source

Inspiration





- COnstructive OSS integration cost model
- 4 effort submodels

- Assessment Effort, Customizing Effort, Glue Code 
Effort, Volatility Effort

- Total Effort = Sum of 4 sub efforts

COOSS Overview



COCOTS v.s. COOSS
Submodels COCOTS COOSS

Assessment Effort
Rigorous: Payment

Average Effort for two 
passes

Mild: Free license
Average Effort

Tailoring/Customiz
-ing Effort

Black box: Configure
Average Effort

White box: Modify and Customize;
COCOMO II Reuse Model

Glue Code Effort COTS effort multipliers OSS Cost Drivers

Volatility Effort COTS effort multipliers OSS Cost Drivers



Assessment Effort

● Initial evaluation
● Selection aspects:

○ Functional requirements - Fitness/Capability offered
○ Non-functional requirements – Performance/Reliability/Usability/Maintainability
○ Service Quality – Community support

● Effort model:



Assessment Attributes



Assessment Checklist Example



- White box
- Effort Model: COCOMO II Reuse model 

- Software Understanding Increment SU
- Cost drivers

Customizing Effort



OSS Software Understanding (OSU)



Cost Drivers



- Any new written code that link OSS components to the in-
house applications.

- Two situations:
- to facilitate data or information exchange
- to connect components

Glue Code Effort



Glue Code Effort

● A = linear scaling constant
● Size = of the glue code in lines of code or function points
● OREVOL = Percentage of rework of the glue code due to requirements change or 

volatility in the OSS components
● B = an architectural nonlinear scaling factor
● Effort multipliers = 11 multiplicative effort adjustment factors with ratings from very low to 

very high



System Volatility

● application effort = new coding effort
● SOREVOL = Percentage of rework of the glue code due to OSS components volatility
● REVL = Percentage of rework in the system independent of OSS components
● E = 1.01+(COCOMO Scale Factors)
● B = an architectural nonlinear scaling factor
● Effort multipliers = 11 multiplicative effort adjustment factors with ratings from very low to 

very high

System Volatility Effort = (application effort) *{[1+ 
(SOREVOL/1+REVL)] E - 1}*(Effort multipliers)



● We surveyed a set of 32 papers on the topic of OSS integration and 
the results provided us with a list of top OSS integration challenges. 
The top 10 integration challenges we found served as a starting point 
to come up with COOSS model.

● Contributions
○ Assessment Effort Submodel: OSS components assessment 

attributes/checklists
○ Software Understanding for OSS components
○ 11 cost drivers

CONCLUSION



● Construct rating criteria for the eleven effort multipliers

● Conduct Survey to collect multiplier values

● Improve the cost driver and scale factors

● Collecting OSS components integration data to evaluate the 

estimation

○ OSS projects

○ Students projects

Future Work



Reference
1. Abts, Chris, Barry W. Boehm, and Elizabeth Bailey Clark. "COCOTS: A COTS software integration lifecycle cost model-model overview and 

preliminary data collection findings." ESCOM-SCOPE Conference. 2000.
2. Majchrowski, Annick, and Jean-Christophe Deprez. "An operational approach for selecting open source components in a software development 

project."Software Process Improvement. Springer Berlin Heidelberg, 2008. 176-188.
3. Boehm, Barry W., Ray Madachy, and Bert Steece. Software cost estimation with Cocomo II with Cdrom. Prentice Hall PTR, 2000.
4. Golden, Bernard. "Open Source Maturity Model." The Open Source Business Resource (2008): 4.
5. Ven, Kris, and Jan Verelst. "The importance of external support in the adoption of open source server software." Open Source Ecosystems: Diverse 

Communities Interacting. Springer Berlin Heidelberg, 2009. 116-128.
6. Merilinna, Janne, and Mari Matinlassi. "State of the art and practice of opensource component integration." Software Engineering and Advanced 

Applications, 2006. SEAA'06. 32nd EUROMICRO Conference on. IEEE, 2006.
7. Chen, Weibing, et al. "An empirical study on software development with open source components in the chinese software industry." Software Process: 

Improvement and Practice 13.1 (2008): 89-100.
8. Ruffin, Michel, and Christof Ebert. "Using open source software in product development: A primer." Software, IEEE 21.1 (2004): 82-86.
9. Hauge, Øyvind, Carl-Fredrik Sørensen, and Andreas Røsdal. "Surveying industrial roles in open source software development." Open source 

development, adoption and innovation. Springer US, 2007. 259-264.
10. Ayala, Claudia, et al. "Challenges of the open source component marketplace in the industry." Open Source Ecosystems: Diverse Communities 

Interacting. Springer Berlin Heidelberg, 2009. 213-224.
11. Krivoruchko, Jacob. "The use of open source software in enterprise distributed computing environments." Open Source Development, Adoption and 

Innovation. Springer US, 2007. 277-282.
12. Tiangco, Francis, et al. "Open-source software in an occupational health application: the case of Heales Medical Ltd." Procs (2005).Agerfalk, Par J., et 

al. "Assessing the role of open source software in the European secondary software sector: a voice from industry." (2005).
13. Jaaksi, Ari. "Experiences on product development with open source software."Open source development, adoption and innovation. Springer US, 2007. 

85-96.
14. Bac, Christian, et al. "Why and how to contribute to libre software when you integrate them into an in-house application." Proceedings of the First 

International Conference on Open Source Systems. 2005.



Reference
15. Bac, Christian, et al. "Why and how to contribute to libre software when you integrate them into an in-house application." Proceedings of the First 

International Conference on Open Source Systems. 2005.
16. Mannaert, Herwig, and Kris Ven. "The use of open source software platforms by Independent Software Vendors: issues and opportunities." ACM 

SIGSOFT Software Engineering Notes. Vol. 30. No. 4. ACM, 2005.
17. Ven, Kris, and Herwig Mannaert. "Challenges and strategies in the use of open source software by independent software vendors." Information and 

Software Technology 50.9 (2008): 991-1002.Kotonya, Gerald, and Awais Rashid. "A strategy for managing risk in component-based software 
development." Euromicro Conference, 2001. Proceedings. 27th. IEEE, 2001.

18. Garlan, David, Robert Allen, and John Ockerbloom. "Architectural mismatch: Why reuse is so hard." IEEE software 6 (1995): 17-26.
19. Anh, Nguyen Duc, et al. "Collaborative resolution of requirements mismatches when adopting open source components." Requirements Engineering: 

Foundation for Software Quality. Springer Berlin Heidelberg, 2012. 77-93.
20. Spinellis, Diomidis. "Choosing and using open source components." IEEE Software 3 (2011): 96.
21. Stol, Klaas-Jan, et al. "A comparative study of challenges in integrating Open Source Software and Inner Source Software." Information and Software 

Technology 53.12 (2011): 1319-1336.
22. Sung, Won Jun, Ji Hyeok Kim, and Sung Yul Rhew. "A quality model for open source software selection." Advanced Language Processing and Web 

Information Technology, 2007. ALPIT 2007. Sixth International Conference on. IEEE, 2007.
23. Adewumi, Adewole, Sanjay Misra, and Nicholas Omoregbe. "A review of models for evaluating quality in open source software." IERI Procedia 4 

(2013): 88-92.
24. Sarrab, Mohamed, and Osama M. Hussain Rehman. "Empirical study of open source software selection for adoption, based on software quality 

characteristics." Advances in Engineering Software 69 (2014): 1-11.
25. Majchrowski, Annick, and Jean-Christophe Deprez. "An operational approach for selecting open source components in a software development 

project."Software Process Improvement. Springer Berlin Heidelberg, 2008. 176-188.


