Lin Shi, Celia Chen, Qing Wang, Barry Boehm
Center of Systems and Software Engineering, University of Southern California
Institute of Software Chinese Academy of Sciences

ERE e, s]

Background Motivation COOSS Overview

Reference Future Work Conclusion

Over 17 billion open source components downloaded from public
repositories in 2014

At least 70 percent of new enterprise Java applications will be
deployed on an open source Java application server by the end of
2017.

by Gartner reports

By 2016 the vast majority of mainstream IT organizations will
leverage open source software (OSS) components in mission-critical
IT solutions.

by Gartner reports

41.70% of people plan to deploy an Open Source solution in 1-2 years
> 56% of companies using OSS will collaborate with competitors
> 50% of all purchased software will be Open Source in 5 years

by Black Duck Software and North Bridge Partner’s survey (2015)

e No cost e Need very experienced

e Extensive community of staff to integrate
developers involved e \ulnerable to threats

e Source code is readily e Potential high support and
available maintenance costs

e Constantly being updated e Need right level of

e Problems/bugs are quickly expertise to manage
rectified e Environment/platform

Incompatible

Unhealthy/unsupportive 055 community

g e

Lack of /low guality documentation

Function and non-function mismatches

Interoperability issues

Poor quality of software

High maintenance efforts after integrating

Lack of internal expertise

High learning efforts and cost

Lack of vendor support

i

Dl 10 20 50 40 50 60 70 80 50

Data source: Literature reviews on 32 papers on the topics of OSS component integration.

Top 10 0SS integration challenges found in literature reviews

Trade-offs

Cost

- Support Cost
- Learning Cost
- Maintenance Cost

/A

Benefits

A

Tt T, Y=
; review) .dnulgn review) dalivery]
COCOTS
3. Glue Code
@ | | tcors Tailoring s
- COnstructive COTS integration cost &
model ’
- Extensive for COCOMO
4. System Effort due to COTS Volatility
- Focuses on COTS integration into
in-house applications Time &
- Has 4 levels of effort source LCO - Lifecysle Objactives S e

LEA - Lifecycle Architecture
10 — Initial Operational Capability _

COTS

X

P

O

&

Source Code

Future Evolution

Extensive Support

0SS

- COnstructive OSS integration cost model

- 4 effort submodels
- Assessment Effort, Customizing Effort, Glue Code
Effort, Volatility Effort

- Total Effort = Sum of 4 sub efforts

GCOCOTS v.s. COOSS

Submodels COCOTS COO0OSS

Rigorous: Payment Mild: Free license

Assessment Effort Average Effort for two
Average Effort
passes
Tailoring/Customiz Black box: Configure White box: Modify and Customize;
-ing Effort Average Effort COCOMO Il Reuse Model
Glue Code Effort COTS effort multipliers OSS Cost Drivers

Volatility Effort COTS effort multipliers OSS Cost Drivers

e |[nitial evaluation
e Selection aspects:

O Functional requirements - Fitness/Capability offered
O Non-functional requirements — Performance/Reliability/Usability/Maintainability
O Service Quality — Community support

e Effort model:

Assessment Effort = (# Candidate 055 componets) Z {Average assessment ef fort for attribute in class) (Hattributes)
class

Openness
Completeness
Clarity
Validity
Precedent
Scale
Reliability
Safety
Requirements/Features Security
Understandability
Performance

Functionality
Product Engineering Design and Integration Environment
Project History
Community Environment Community Activities

Internal Expertise
Time and Schedule
Program Constraint Resource Licensing

Community Environment

Project Histary

- How long does the 0SS project exist?

- How often do new release come out?

- How many stable releases are there?

- How recent is the last one release?

- Does the project offer a separate
cutting-edge and stable release cycle?

- A project that appears dormant for years is a
bad sign: developers might have lost interest
and abandoned it?!

+ Do developers fix existing bugs, or just piling
one new flashy features?

+ Do they respect their user base, or do they
break backward compatibility with each new
release?

* Is the project's direction compatible with
yours?

Community Activities

- Is there a real community behind the project,
or will you tie the knot with a one-man show?
- Is the community working together as a
team or constantly fighting?

- Do developers cooperate under a
well-defined democratic process, or will you
depend on the whims of an autocrat?

- Are the users supportive, answering
questions, and going out of their way to make
newcomers feel welcome, or are they insular,
arrogant, and rude?

- White box

- Effort Model: cocoMO Il Reuse model

- Software Understanding Increment SU
- Cost drivers

Equivalent ESLOC = Adapted ELOC *(] —%} * A4M

AAF =04*DM +03*CM +0.3*IM

[Ad+ AAF(1+0.02*5U *UNFM)

. 100
Sl ": Ad + AAF + SU*UNFM

L 100

, for AAF £50

. for AAF > 50

F
PM = A*Size" * | EM,

Very Low

Low

Nominal

High

Yery High

Very low cohesion, high

Moderately low
cohesion, high

Reasonably
well-structured;

High cohesion,

Strong modularity,
information hiding in

Structure coupling, spaghetti code |coupling some weak areas | low coupling data / control structures
Good
Moderate correlation
Ma match between Some correlation correlation between Clear match between
program and application |between program and |between program |program and pragram and
Application Clarity world-views application and application application application world-views
Self-descriptive code;
Some code Moderate level of |Good code Useful
Code commentary | Obscure code commentary code commentary | commentary examples/samples
Complete, readable,
and well-organized
documentation;
User manual;
Technical
documentation that help
Documentation missing, |Some useful Moderate level of | Useful building and modifying
Documentation obscure or obsolete documentation documentation documentation | support
A few active members |Moderate Highly active
cantribute for the community with community behind,
Cne-man show/MNo real | community, slow some active Good guick response on
Community Support | community behind response members community technical questions
SU Increment 50 40 30 20 10

0OCCQ
oDCcAQ
OCFC
OREL
OCPF
ORMA
OCMA
OCIC
OCCP
OLDP
OICP

0SS Component Code Quality
0SS Documentation Quality
0SS Components Functional Complexity
0SS Components Reliability
088 Components Performance
0S5S Release Maturity
055 Community Maturity
0SS Components Integrator Capability
0SS Components Compliance with platform
0SS library Dependency
0SS Components Interface Complexity

- Any new written code that link OSS components to the in-
house applications.
- Two situations:
- to facilitate data or information exchange
- to connect components

Glue Code Effort = A = [(Size) (1 + OREVOL)]® =« H{Effurr multipliers)

e A =linear scaling constant

e Size = of the glue code in lines of code or function points

e OREVOL = Percentage of rework of the glue code due to requirements change or
volatility in the OSS components

e B = an architectural nonlinear scaling factor

e Effort multipliers = 11 multiplicative effort adjustment factors with ratings from very low to
very high

system Volatility

System Volatility Effort = (application effort) *{[1+
(SOREVOL/1+REVL)] £ - 1}*(Effort multipliers)

application effort = new coding effort

SOREVOL = Percentage of rework of the glue code due to OSS components volatility
REVL = Percentage of rework in the system independent of OSS components

E =1.01+(COCOMO Scale Factors)

B = an architectural nonlinear scaling factor

Effort multipliers = 11 multiplicative effort adjustment factors with ratings from very low to
very high

e We surveyed a set of 32 papers on the topic of OSS integration and
the results provided us with a list of top OSS integration challenges.
The top 10 integration challenges we found served as a starting point
to come up with COOSS model.

e Contributions
o Assessment Effort Submodel: OSS components assessment
attributes/checklists
o Software Understanding for OSS components
o 11 cost drivers

e Construct rating criteria for the eleven effort multipliers

e Conduct Survey to collect multiplier values
e Improve the cost driver and scale factors
e Collecting OSS components integration data to evaluate the

estimation
o QOSS projects

o Students projects

10.

11.

12.

13.

14.

Abts, Chris, Barry W. Boehm, and Elizabeth Bailey Clark. "COCOTS: A COTS software integration lifecycle cost model-model overview and
preliminary data collection findings." ESCOM-SCOPE Conference. 2000.

Majchrowski, Annick, and Jean-Christophe Deprez. "An operational approach for selecting open source components in a software development
project."Software Process Improvement. Springer Berlin Heidelberg, 2008. 176-188.

Boehm, Barry W., Ray Madachy, and Bert Steece. Software cost estimation with Cocomo Il with Cdrom. Prentice Hall PTR, 2000.

Golden, Bernard. "Open Source Maturity Model." The Open Source Business Resource (2008): 4.

Ven, Kris, and Jan Verelst. "The importance of external support in the adoption of open source server software." Open Source Ecosystems: Diverse
Communities Interacting. Springer Berlin Heidelberg, 2009. 116-128.

Merilinna, Janne, and Mari Matinlassi. "State of the art and practice of opensource component integration." Software Engineering and Advanced
Applications, 2006. SEAA'06. 32nd EUROMICRQO Conference on. IEEE, 2006.

Chen, Weibing, et al. "An empirical study on software development with open source components in the chinese software industry." Soffware Process:
Improvement and Practice 13.1 (2008): 89-100.

Ruffin, Michel, and Christof Ebert. "Using open source software in product development: A primer." Software, IEEE 21.1 (2004): 82-86.

Hauge, @yvind, Carl-Fredrik Sgrensen, and Andreas Rgsdal. "Surveying industrial roles in open source software development." Open source
development, adoption and innovation. Springer US, 2007. 259-264.

Ayala, Claudia, et al. "Challenges of the open source component marketplace in the industry." Open Source Ecosystems: Diverse Communities
Interacting. Springer Berlin Heidelberg, 2009. 213-224.

Krivoruchko, Jacob. "The use of open source software in enterprise distributed computing environments." Open Source Development, Adoption and
Innovation. Springer US, 2007. 277-282.

Tiangco, Francis, et al. "Open-source software in an occupational health application: the case of Heales Medical Ltd." Procs (2005).Agerfalk, Par J., et
al. "Assessing the role of open source software in the European secondary software sector: a voice from industry." (2005).

Jaaksi, Ari. "Experiences on product development with open source software."Open source development, adoption and innovation. Springer US, 2007.
85-96.

Bac, Christian, et al. "Why and how to contribute to libre software when you integrate them into an in-house application." Proceedings of the First
International Conference on Open Source Systems. 2005.

15.

16.

17.

18.

19.

20.
21.

22.

23.

24.

25.

Bac, Christian, et al. "Why and how to contribute to libre software when you integrate them into an in-house application." Proceedings of the First
International Conference on Open Source Systems. 2005.

Mannaert, Herwig, and Kris Ven. "The use of open source software platforms by Independent Software Vendors: issues and opportunities." ACM
SIGSOFT Software Engineering Notes. Vol. 30. No. 4. ACM, 2005.

Ven, Kris, and Herwig Mannaert. "Challenges and strategies in the use of open source software by independent software vendors." Information and
Software Technology 50.9 (2008): 991-1002.Kotonya, Gerald, and Awais Rashid. "A strategy for managing risk in component-based software
development." Euromicro Conference, 2001. Proceedings. 27th. IEEE, 2001.

Garlan, David, Robert Allen, and John Ockerbloom. "Architectural mismatch: Why reuse is so hard." IEEE software 6 (1995): 17-26.

Anh, Nguyen Duc, et al. "Collaborative resolution of requirements mismatches when adopting open source components." Requirements Engineering:
Foundation for Software Quality. Springer Berlin Heidelberg, 2012. 77-93.

Spinellis, Diomidis. "Choosing and using open source components." IEEE Software 3 (2011): 96.

Stol, Klaas-Jan, et al. "A comparative study of challenges in integrating Open Source Software and Inner Source Software." Information and Software
Technology 53.12 (2011): 1319-1336.

Sung, Won Jun, Ji Hyeok Kim, and Sung Yul Rhew. "A quality model for open source software selection." Advanced Language Processing and Web
Information Technology, 2007. ALPIT 2007. Sixth International Conference on. IEEE, 2007.

Adewumi, Adewole, Sanjay Misra, and Nicholas Omoregbe. "A review of models for evaluating quality in open source software." IERI Procedia 4
(2013): 88-92.

Sarrab, Mohamed, and Osama M. Hussain Rehman. "Empirical study of open source software selection for adoption, based on software quality
characteristics." Advances in Engineering Software 69 (2014): 1-11.

Majchrowski, Annick, and Jean-Christophe Deprez. "An operational approach for selecting open source components in a software development
project."Software Process Improvement. Springer Berlin Heidelberg, 2008. 176-188.

