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● No cost
● Extensive community of 

developers involved
● Source code is readily 

available
● Constantly being updated
● Problems/bugs are quickly 

rectified

● Need very experienced 
staff to integrate

● Vulnerable to threats
● Potential high support and 

maintenance costs
● Need right level of 

expertise to manage
● Environment/platform 

incompatible

Advantages Disadvantages



Top 10 OSS integration challenges found in literature reviews

OSS



Cost

- Support Cost
- Learning Cost
- Maintenance Cost

Trade-offs



How to estimate the costs?



COCOTS
- COnstructive COTS integration cost 

model
- Extensive for COCOMO

- Focuses on COTS integration into 
in-house applications

- Has 4 levels of effort source

Inspiration





- COnstructive OSS integration cost model
- 4 effort submodels

- Assessment Effort, Customizing Effort, Glue Code 
Effort, Volatility Effort

- Total Effort = Sum of 4 sub efforts

COOSS Overview



COCOTS v.s. COOSS
Submodels COCOTS COOSS

Assessment Effort
Rigorous: Payment

Average Effort for two 
passes

Mild: Free license
Average Effort

Tailoring/Customiz
-ing Effort

Black box: Configure
Average Effort

White box: Modify and Customize;
COCOMO II Reuse Model

Glue Code Effort COTS effort multipliers OSS Cost Drivers

Volatility Effort COTS effort multipliers OSS Cost Drivers



Assessment Effort

● Initial evaluation
● Selection aspects:

○ Functional requirements - Fitness/Capability offered
○ Non-functional requirements – Performance/Reliability/Usability/Maintainability
○ Service Quality – Community support

● Effort model:



Assessment Attributes



Assessment Checklist Example



- White box
- Effort Model: COCOMO II Reuse model 

- Software Understanding Increment SU
- Cost drivers

Customizing Effort



OSS Software Understanding (OSU)



Cost Drivers



- Any new written code that link OSS components to the in-
house applications.

- Two situations:
- to facilitate data or information exchange
- to connect components

Glue Code Effort



Glue Code Effort

● A = linear scaling constant
● Size = of the glue code in lines of code or function points
● OREVOL = Percentage of rework of the glue code due to requirements change or 

volatility in the OSS components
● B = an architectural nonlinear scaling factor
● Effort multipliers = 11 multiplicative effort adjustment factors with ratings from very low to 

very high



System Volatility

● application effort = new coding effort
● SOREVOL = Percentage of rework of the glue code due to OSS components volatility
● REVL = Percentage of rework in the system independent of OSS components
● E = 1.01+(COCOMO Scale Factors)
● B = an architectural nonlinear scaling factor
● Effort multipliers = 11 multiplicative effort adjustment factors with ratings from very low to 

very high

System Volatility Effort = (application effort) *{[1+ 
(SOREVOL/1+REVL)] E - 1}*(Effort multipliers)



● We surveyed a set of 32 papers on the topic of OSS integration and 
the results provided us with a list of top OSS integration challenges. 
The top 10 integration challenges we found served as a starting point 
to come up with COOSS model.

● Contributions
○ Assessment Effort Submodel: OSS components assessment 

attributes/checklists
○ Software Understanding for OSS components
○ 11 cost drivers

CONCLUSION



● Construct rating criteria for the eleven effort multipliers

● Conduct Survey to collect multiplier values

● Improve the cost driver and scale factors

● Collecting OSS components integration data to evaluate the 

estimation

○ OSS projects

○ Students projects

Future Work
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