Implications of multitasking in large software projects

Alexey Tregubov
Outline

- What is multitasking?
- Effects of multitasking
- Multitasking in system and software engineering
- Agile and Lean against multitasking
- Success & failure: example
- Can we do better?
 - Weinberg’s heuristic
 - Cost estimation of multitasking
 - Approach
- Simulation model
- Experiments examples
- Future work
What is multitasking?

- Multitasking - the activity of performing multiple tasks during a certain period of time
- Good or bad?
 Depends: it varies from texting and driving to walking and chewing
Effects of multitasking

- Multitasking causes interruptions
- Interruptions have positive and negative effects
 [Jett, George]:
 - Intrusions (cons: reimmersion time, pros: communication)
 - Breaks (cons: procrastination, pros: time for creative tasks)
 - Distraction (cons: poor performance, pros: kills boredom)
- Contest switching always has a cost
 - reimmersion time – cost of context switching between two cognitive activities
Multitasking in work environment

- Interruptions

 - Corporate culture
 - Office environment
 - Process-related multitasking
 - High level parallel activities
 - Engineering processes

 - Personal process
 - Personality type

 - Productivity

Management

Psychology
Multitasking in SW and SE engineering

Factors that affect process-induced multitasking:
- Number of parallel projects
- Number of system capabilities pushed simultaneously in SoS
- New release vs. maintenance of the previous release

Context switching cost in software engineering:
- physical (switch between repositories, DBs, servers, etc.)
- mental/cognitive context switching
- cross-project communication overhead (managers more likely to ask for status updates)
Agile and Lean methodologies against interruptions

Agile and Lean processes to some extent address negative effects of interruptions:

- **Scrum:**
 - Scrum master “acts as a buffer between the team and any distracting influences”
 - Time boxing of team’s work (sprints), limited work in progress

- **Kanban:**
 - Kanban boards -> better visibility -> less interruptions

- **Lean practices:**
 - “create flow” principle
Success & failure: example

MSS-holding
- IT company from Akademgorodok, Russia
- vendor of energy efficiency monitoring systems (MES type of systems)
- matrix organizational structure

Success & failure:
- 2010 worked on 3 project
 - projects delivered on time and in budget
- 2011-2012 worked on 9 project
 - 1 project was canceled after 6 months
 - 3 projects missed deadlines
Success & failure: example

Estimation difficulties:

- Multitasking overhead had never been explicitly evaluated and accounted in the schedule
- Experts estimated tasks without knowing how much they would need to multitask
How to estimate productivity?

Weinberg’s heuristic [Weinberg]
Can we do better?

Research questions:

- Depending on number of high-level activities running in parallel, how can we estimate:
 - cost and schedule?
 - productivity decline?
- How the cost and schedule estimation would be different for SoS and large single system development?
- How Lean and Agile processes can help reduce negative effects of interruptions?
Approach

- Develop a simulation model
- Recreate an existing projects/systems in simulation
- Run the simulation in different configurations and compare the results
- Develop COCOMO-based estimation model
Simulation model

- Agent based simulation model

Model:

- Organizational model – structure of product and domain teams, SE team, stakeholders, etc.
- Governance model – defines agents’ behavior:
 - scheduling algorithms
 - queues management
 - resource multitasking
 - work and resource outsourcing policies
- WI network model – all WI and their relationships, defines:
 - Work decomposition
 - Value flow
Inputs and outputs

Inputs:
- Organizational structure
- Governance model configuration
- Event scenario – events that describe how WIs originate and evolve in the simulation model

Outputs:
- Effort and schedule
- Resource utilization:
 - Effort spent on context switching between tasks / multitasking
Modeling interruptions

- Reimmersion time:
 - Constant time: 1 hour/1 timeframe
 - Variable reimmersion time based on
 - Task complexity
 - Assignment to another resource
 - Length of suspension

Diagram:
- Effort without interruptions
- Work started
- Work interrupted
- Work resumed
- Work finished
- Time
Experiment examples

- **Experiment 1**
 - Scheduling algorithms: KSS, LIFO, value-neutral
 - Compares
 - value delivered over time
 - total schedule and effort
 - Suspended/interrupted work

- **Experiment 2**
 - Scheduling algorithms: KSS, LIFO, FIFO, value-neutral
 - Compares
 - value delivered over time
 - Capability completeness

- **Experiment 3**
 - KSS scheduling
 - Shows impact of interruptions on cost in WI networks of different size
Simulation output example (Results from experiment 3)

Number of interrupted tasks

<table>
<thead>
<tr>
<th>Time</th>
<th>Number of Interrupted Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>16</td>
<td>16</td>
</tr>
<tr>
<td>18</td>
<td>18</td>
</tr>
<tr>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>28</td>
<td>28</td>
</tr>
<tr>
<td>30</td>
<td>30</td>
</tr>
<tr>
<td>32</td>
<td>32</td>
</tr>
<tr>
<td>34</td>
<td>34</td>
</tr>
<tr>
<td>36</td>
<td>36</td>
</tr>
<tr>
<td>38</td>
<td>38</td>
</tr>
<tr>
<td>40</td>
<td>40</td>
</tr>
<tr>
<td>42</td>
<td>42</td>
</tr>
<tr>
<td>44</td>
<td>44</td>
</tr>
<tr>
<td>46</td>
<td>46</td>
</tr>
<tr>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td>50</td>
<td>50</td>
</tr>
<tr>
<td>52</td>
<td>52</td>
</tr>
<tr>
<td>54</td>
<td>54</td>
</tr>
<tr>
<td>56</td>
<td>56</td>
</tr>
<tr>
<td>58</td>
<td>58</td>
</tr>
<tr>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>62</td>
<td>62</td>
</tr>
<tr>
<td>64</td>
<td>64</td>
</tr>
<tr>
<td>66</td>
<td>66</td>
</tr>
<tr>
<td>68</td>
<td>68</td>
</tr>
<tr>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>72</td>
<td>72</td>
</tr>
<tr>
<td>74</td>
<td>74</td>
</tr>
<tr>
<td>76</td>
<td>76</td>
</tr>
<tr>
<td>78</td>
<td>78</td>
</tr>
<tr>
<td>80</td>
<td>80</td>
</tr>
</tbody>
</table>

Graph showing the number of interrupted tasks over time for three different policies:
- KSS
- Value-neutral (random selection)
- LIFO
Future work

- Recreate an existing projects/systems in simulation
- Compare simulated results with facts
- Explore feasibility of the parametric COCOMO-based estimation model for multitasking
Questions

• Q&A
References

References

Images courtesy:

- http://mercercognitivepsychology.pbworks.com/f/1385057522/Multitasking.jpg