Large Scale Evolutionary
Analysis on Software Systems

Pooyan Behnamghader
pbehnamg@usc.edu
USC Center for Systems and Software Engineering

USC \ﬁterbl

School of Eng ng University of Southern California

Outline

e Introduction
o Recent contributions
e Large Scale Evolutionary Analysis Example
o A Large-Scale Study of Architectural Evolution in Open-Source Software Systems
o Tool Requirements, Architectural Change, Evolutionary Trend Example
e Scale and Challenges
e ARCADE-Controller (ATLAS)
e New Results
o New Results: FindBugs, PMD, CheckStyle, SonarQube, UCC, SLOCCount
e Discussion

USC Viterbi

School of Engineering University of Southern California

Introduction

Recent contributions:
e A Large-Scale Study of Architectural Evolution in Open-Source Software Systems.

o Pooyan Behnamghader, Duc Le, Joshua Garcia, Daniel Link, Arman Shahbazian and Nenad
Medyvidovic.

o Journal of Empirical Software Engineering. (Accepted Sept. 20, 2016/In Press.)
o Domains: Software Architecture Recovery, Mining Software Repository
e Using Visual Symptoms for Debugging Presentation Failures in Web Applications
o Sonal Mahajan, Bailan Li, Pooyan Behnamghader, William G. J. Halfond
o 2016 IEEE International Conference on Software Testing, Verification and Validation (ICST)
o Domains: Software Testing, Web Interface Analysis

Both studies initially had scalability issues

USC Viterbi

School of Engineering University of Southern California

Large Scale Evolutionary Analysis Example

A Large-Scale Study of Architectural Evolution in Open-Source Software Systems

Research Questions:

e RQ1: To what extent do architectures change at the system level?

e RQ2: To what extent do architectures change at the component level?

e RQ3: Do architectural changes at the system and component levels occur concurrently?

e RQ4: Does significant architectural change occur between minor system versions within a single major
version?

USC Viterbi

School of Engineering University of Southern California

Analysis Tool Requirements

e Architecture recovery techniques to extract architectural models from implementation level artifacts.

e Metrics to calculate system level and component level architectural changes.

[s | R e e e ': [E; T :
' 1 Change ' ange
: Sg;(;c;e O—e@| _Recovery |\ o | Architectures o @ Metrics O——@ Metrics :
| Techniques | Values [
l P 1 e Calculator | R i
o0—e
Legend Artifacts Components Dataflow
Connector

USC Viterbi

School of Engineering

University of Southern California

Architectural Change

...

What does architectural Architecture A
change mean?
al 32 a3 a4
Architecture A
@ A CIUSIEIS eSS

...

. Architecture B
e 14 entities

= 6o

e 15 entities

...

USC \ﬁterb1

hool of Eng ng University of Southern California

Evolutionary Trend Example

Architectural changes among minor ¢ PKG BWACDC 4 ARC
versions of apache-ant-ivy _
100 iy S] n 8
Recovery techniques:] | 9 | A 4
e PKG (gross organization) 80 f Py = o ’ ‘iﬁ
& 3
e ACDC (module dependency) T &
60
e ARC (semantic view) =
Change metric: < 40
e A2A (System-level)
20
0

o (=) o o Qo j= o o Qo (=] o L= Q [=

4
0
i 1
2
3

T3] W I~ oo (5}] o — (o] o
o [] (m] o o et st e =] =i ™~ ™~ ™~ ™~
VERSION

USC Viterbi N e
University of Southern California

School of Engineering

The Scale of the Study

The largest study of architectural recovery and architectural evolution to date:
e 23 subject systems
e 931 examined system versions
e 140 MSLOC analyzed code
e 2793 analyzed architectural models

e Comparing pairs of architectural models using two change metrics

The challenges in this scale:
e Dealing with issues of each case study
e Comparing the results of multiple analyses on same data points
e Collaborating in a team

USC Viterbi

School of Engineering University of Southern California

Challenges

e Case Study
o Different structure/modules/build automation tool for each system/version
m e.g., the “core” module locates in a different subdirectory in older versions.
o Unsuitable case studies
m e.g., the architecture is too small to be meaningful for some specific analysis.
e Analysis
o Implementing tool for a new technique that does not have any ground-truth
m e.g. your algorithm is wrong or there is a bug in the implementation.
e You realize it when you see weird evolutionary patterns in your data
o Using already existing of-the-shelf implementation of a solid technique
m The implementation is simply buggy. (e.g. non-deterministic implementation)
e Teamwork!

USC Viterbi

School of Engineering University of Southern California

It Would be Much Easier if...

e For each case study we could declare

O

the remote repository.

O

build command(s).

O

interesting modules, subsystems, or packages.

O

interesting version sets
e For each analysis we could declare

o how to prepare the environment for the analysis.

o how to run analysis on each system/version.

o how to interpret and compare the results, and generate statistics.
e We could define a portable workflow to automatically run the study

o on a powerful remote server.

o distributed over the cloud.

USC Viterbi

School of Engineering University of Southern California

Source
Code

e Cloud Instances

ARCADE-Controller (ATLAS)

r _______ 1
[et "1I_
._.:,J | it 1
—— e @ Architectures P
L]

Analysis Server

—$

Change
Metrics
Calculator

X

/ Cloud instance \
1
i
I, Recovery ~
:G o Techniques

\\
o 7

o Download and compile the source code

o Run the analysis on the subject system

o Send the artifacts to the analysis server

e Analysis Server

o Compares the artifacts using change metrics

o Gets the statistics

USC Viterbi

School of Engineering

Change
Metrics

Values _ |

-
—_—

University of Southern California

ARCADE-Controller (ATLAS) - cont.

e The ability to define a solid workflow for the analysis
o Replicability
e The ability to employ cloud-computing power to run large-scale analyses in a reasonable amount of time
o Scalability
e The ability to use the same subject systems for different analyses
o Data Consistency and Reusability
e The ability to run each analysis in a cloud instance as a sandbox
o Running static (e.g., ARCADE) and dynamic (e.g., FieryEye') analysis

1. FieryEye is dynamic web-interface analyzer. We used the same technique to resolve the scalability issues for FieryEye.

USC Viterbi

School of Engineering University of Southern California

New Results

e Architectural evolution
o Architecture recovery and architectural changes: ACDC, ARC, PKG, A2A, CVG

e Allit takes from downloading the source code from the repository to generating the statistics is “push a
button”!

o Both on a local machine or on the cloud

e There are already several subject systems configured in the framework
o The capability to collect a large amount of data without much effort!

e How about the evolution of other aspects (e.g., defects, style, debt) of a software system?
o FindBugs, PMD, CheckStyle, SonarQube, UCC, SLOCCount

USC Viterbi

School of Engineering University of Southern California

FindBugs

Evolution of alibaba-druid

e Finds bugs in Java programs. /_/_/_/J_,_//—de total_size

e Analyze programs compiled for o I—

BO

any version of Java. _ num_packages

e Requires binary releases

oo

1000

total_classes

180

:l \/—/\/_/_/—\/—/_/ total_bugs
120

_,.‘._W priority_1
150 e

25 priority_2
100

e referenced classes

USC Viterbi

School of Engineering University of Southern California

PMD

Evolution of alibaba-druid

® Finds common programming //—\I—K_/_ﬁ—/—// GodClass
flaws like:

UnusedLocalVariable

o unused variables

o empty catch blocks

. EmptyCatchBlock
o unnecessary ObjeCt 215!
creation
|;‘\ CompareObjects\WithEquals
O nan 14

([] SOU rce COde analyzer :":\/f_/’—/_’_/v“/ UncommentedEmptyMethodBod;

e Supports a variety of
Iang UageS ‘ \— UnusedPrivateField

/ N & Tt
2 g memseeo o aad @ AvoidDeeplyNestedIfStmts

- ,77—/ UncommentedEmptyConstructor

USC Viterbi

School of Engineering University of Southern California

Checkstyle

Evolution of google-truth

e Helps programmers write Java jj;f—f__““/'_—
code that adheres to a coding

standard.
® HIgh'y Configurable NonEmptyAtclauseDescriptiionCheck

o Sun Code Conventions

total_checkstyle

O Google Java Style |h WhitespaceAroundCheck

175
15 / CatchParameterNameCheck

/ CustomimportOrderCheck
15 /
N LineLengthCheck

University of Southern California

USC Viterbi

School of Engineering

e Manages code quality.

e Covers the 7 axes of code
quality:

Architecture & Design

Potential bugs Complexity

http://www.sonarqube.org

USC Viterbi

Comments
Duplications
: Sources .
Coding rules (Unit tests

SonarQube

Evolution of alibaba-druid

120000

110000 LOC

1000004

30000

1225 \,—’—

12004

1175 BUGS
1150

1125

1100
o VULNERABILITIES

6000
5750
55001
5250 CODE SMELLS
5000
4750

ARNM

School of Engineering

University of Southern California

UCC (Unified Code Count)

Evolution of apache-ant-ivy
e Counts, compares, and

475

collects logical differentials 450 Number OFf
between two versions of the pa Files
source code of a software a75

product. 350{ ___—"
e USC Center for Systems and ~ **""

Software Engineering 45000
40000 Physical LOC
: <langs autput.esy
Filelist. bt U CC j}i;ﬁ;g% i i: :V 5000
— Errorlog
C’ounti’n‘g A5000+1

Baseling- <AlB=<LANG=_OUtpUE.c5v

Basaline-< AB><LANG>_cplx.csv A2500
| Duplicates- <A1B=<LANG> output,cs¢

" Duplicates- <AlB-+LANG~_cplx,csv

i 30000
Error Log b :
- - Logical LOC
2750
https://en.wikipedia.org/wiki/File:Block_Diagram_of _UCC.JPG 25000

USC Viterbi

School of Engineering University of Southern California

SLOCCount (calculates basic COCOMO model)

)] Evolution of apache-ant-ivy
e Counts physical source lines

1600000
of code. Iﬂlill'.'t'J'.'j'.'J { f CGSt($]

. 1300000 ——"""
e Basic COCOMO model

o Person-Months = 2.4 * “ f .
(KSLOC**1.05) S size(LOC)

35000 '._'_#_",.r"'_
o Months=25*
(person-months**0.38) o
o Estimated Average : personMonthe
Number of
Developers=

16
Effort/Schedule s f months

o Average salary = Tl

$56,286/year,

overhead = 2.40. f |
nDevelopers

USC Viterbi

School of Engineering

University of Southern California

Discussion

e Suggestions
o What other static analysis tools can be added to the framework?
o What dynamic analysis tools can be added to the framework?

o Would it be interesting if we extend the framework to study difference between commits and the
impact of each developer?

USC Viterbi

School of Engineering University of Southern California

