
Large Scale Evolutionary
Analysis on Software Systems

Pooyan Behnamghader
pbehnamg@usc.edu

USC Center for Systems and Software Engineering

Outline

● Introduction
○ Recent contributions

● Large Scale Evolutionary Analysis Example
○ A Large-Scale Study of Architectural Evolution in Open-Source Software Systems
○ Tool Requirements, Architectural Change, Evolutionary Trend Example

● Scale and Challenges

● ARCADE-Controller (ATLAS)

● New Results
○ New Results: FindBugs, PMD, CheckStyle, SonarQube, UCC, SLOCCount

● Discussion

Introduction

Recent contributions:

● A Large-Scale Study of Architectural Evolution in Open-Source Software Systems.
○ Pooyan Behnamghader, Duc Le, Joshua Garcia, Daniel Link, Arman Shahbazian and Nenad

Medvidovic.
○ Journal of Empirical Software Engineering. (Accepted Sept. 20, 2016/In Press.)
○ Domains: Software Architecture Recovery, Mining Software Repository

● Using Visual Symptoms for Debugging Presentation Failures in Web Applications
○ Sonal Mahajan, Bailan Li, Pooyan Behnamghader, William G. J. Halfond
○ 2016 IEEE International Conference on Software Testing, Verification and Validation (ICST)
○ Domains: Software Testing, Web Interface Analysis

Both studies initially had scalability issues

Large Scale Evolutionary Analysis Example

A Large-Scale Study of Architectural Evolution in Open-Source Software Systems

Research Questions:

● RQ1: To what extent do architectures change at the system level?

● RQ2: To what extent do architectures change at the component level?

● RQ3: Do architectural changes at the system and component levels occur concurrently?

● RQ4: Does significant architectural change occur between minor system versions within a single major
version?

Analysis Tool Requirements

● Architecture recovery techniques to extract architectural models from implementation level artifacts.

● Metrics to calculate system level and component level architectural changes.

Architectural Change

What does architectural
change mean?

Architecture A

● 4 clusters

● 14 entities

Architecture B

● 5 clusters

● 15 entities

Evolutionary Trend Example

Architectural changes among minor
versions of apache-ant-ivy

Recovery techniques:

● PKG (gross organization)

● ACDC (module dependency)

● ARC (semantic view)

Change metric:

● A2A (System-level)

The largest study of architectural recovery and architectural evolution to date:

● 23 subject systems

● 931 examined system versions

● 140 MSLOC analyzed code

● 2793 analyzed architectural models

● Comparing pairs of architectural models using two change metrics

The challenges in this scale:

● Dealing with issues of each case study

● Comparing the results of multiple analyses on same data points

● Collaborating in a team

The Scale of the Study

● Case Study
○ Different structure/modules/build automation tool for each system/version

■ e.g., the “core” module locates in a different subdirectory in older versions.
○ Unsuitable case studies

■ e.g., the architecture is too small to be meaningful for some specific analysis.
● Analysis

○ Implementing tool for a new technique that does not have any ground-truth
■ e.g. your algorithm is wrong or there is a bug in the implementation.

● You realize it when you see weird evolutionary patterns in your data
○ Using already existing of-the-shelf implementation of a solid technique

■ The implementation is simply buggy. (e.g. non-deterministic implementation)
● Teamwork!

Challenges

● For each case study we could declare
○ the remote repository.
○ build command(s).
○ interesting modules, subsystems, or packages.
○ interesting version sets

● For each analysis we could declare
○ how to prepare the environment for the analysis.
○ how to run analysis on each system/version.
○ how to interpret and compare the results, and generate statistics.

● We could define a portable workflow to automatically run the study
○ on a powerful remote server.
○ distributed over the cloud.

It Would be Much Easier if...

ARCADE-Controller (ATLAS)

● Cloud Instances
○ Download and compile the source code
○ Run the analysis on the subject system
○ Send the artifacts to the analysis server

● Analysis Server
○ Compares the artifacts using change metrics
○ Gets the statistics

ARCADE-Controller (ATLAS) - cont.

● The ability to define a solid workflow for the analysis
○ Replicability

● The ability to employ cloud-computing power to run large-scale analyses in a reasonable amount of time
○ Scalability

● The ability to use the same subject systems for different analyses
○ Data Consistency and Reusability

● The ability to run each analysis in a cloud instance as a sandbox
○ Running static (e.g., ARCADE) and dynamic (e.g., FieryEye1) analysis

1. FieryEye is dynamic web-interface analyzer. We used the same technique to resolve the scalability issues for FieryEye.

New Results

● Architectural evolution
○ Architecture recovery and architectural changes: ACDC, ARC, PKG, A2A, CVG

● All it takes from downloading the source code from the repository to generating the statistics is “push a
button”!

○ Both on a local machine or on the cloud
● There are already several subject systems configured in the framework

○ The capability to collect a large amount of data without much effort!
● How about the evolution of other aspects (e.g., defects, style, debt) of a software system?

○ FindBugs, PMD, CheckStyle, SonarQube, UCC, SLOCCount

FindBugs

● Finds bugs in Java programs.

● Analyze programs compiled for
any version of Java.

● Requires binary releases

PMD

● Finds common programming
flaws like:

○ unused variables
○ empty catch blocks
○ unnecessary object

creation
○ ...

● Source code analyzer

● Supports a variety of
languages

Checkstyle

● Helps programmers write Java
code that adheres to a coding
standard.

● Highly configurable
○ Sun Code Conventions
○ Google Java Style

SonarQube

● Manages code quality.

● Covers the 7 axes of code
quality:

http://www.sonarqube.org

UCC (Unified Code Count)

● Counts, compares, and
collects logical differentials
between two versions of the
source code of a software
product.

● USC Center for Systems and
Software Engineering

https://en.wikipedia.org/wiki/File:Block_Diagram_of_UCC.JPG

SLOCCount (calculates basic COCOMO model)

● Counts physical source lines
of code.

● Basic COCOMO model
○ Person-Months = 2.4 *

(KSLOC**1.05)
○ Months = 2.5 *

(person-months**0.38)
○ Estimated Average

Number of
Developers=
Effort/Schedule

○ Average salary =
$56,286/year,
overhead = 2.40.

Discussion

● Suggestions
○ What other static analysis tools can be added to the framework?
○ What dynamic analysis tools can be added to the framework?
○ Would it be interesting if we extend the framework to study difference between commits and the

impact of each developer?

