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Introduction

Recent contributions:
e A Large-Scale Study of Architectural Evolution in Open-Source Software Systems.

o Pooyan Behnamghader, Duc Le, Joshua Garcia, Daniel Link, Arman Shahbazian and Nenad
Medyvidovic.

o Journal of Empirical Software Engineering. (Accepted Sept. 20, 2016/In Press.)
o Domains: Software Architecture Recovery, Mining Software Repository
e Using Visual Symptoms for Debugging Presentation Failures in Web Applications
o  Sonal Mahajan, Bailan Li, Pooyan Behnamghader, William G. J. Halfond
o 2016 IEEE International Conference on Software Testing, Verification and Validation (ICST)
o Domains: Software Testing, Web Interface Analysis

Both studies initially had scalability issues
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Large Scale Evolutionary Analysis Example

A Large-Scale Study of Architectural Evolution in Open-Source Software Systems

Research Questions:

e RQ1: To what extent do architectures change at the system level?

e RQ2: To what extent do architectures change at the component level?

e RQ3: Do architectural changes at the system and component levels occur concurrently?

e RQ4: Does significant architectural change occur between minor system versions within a single major
version?
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Analysis Tool Requirements

e Architecture recovery techniques to extract architectural models from implementation level artifacts.

e Metrics to calculate system level and component level architectural changes.
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Architectural Change
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Evolutionary Trend Example
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The Scale of the Study

The largest study of architectural recovery and architectural evolution to date:
e 23 subject systems
e 931 examined system versions
e 140 MSLOC analyzed code
e 2793 analyzed architectural models

e Comparing pairs of architectural models using two change metrics

The challenges in this scale:
e Dealing with issues of each case study
e Comparing the results of multiple analyses on same data points
e Collaborating in a team
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Challenges

e Case Study
o Different structure/modules/build automation tool for each system/version
m e.g., the “core” module locates in a different subdirectory in older versions.
o Unsuitable case studies
m e.g., the architecture is too small to be meaningful for some specific analysis.
e Analysis
o Implementing tool for a new technique that does not have any ground-truth
m e.g. your algorithm is wrong or there is a bug in the implementation.
e You realize it when you see weird evolutionary patterns in your data
o Using already existing of-the-shelf implementation of a solid technique
m The implementation is simply buggy. (e.g. non-deterministic implementation)
e Teamwork!
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It Would be Much Easier if...

e For each case study we could declare

O

the remote repository.

O

build command(s).

O

interesting modules, subsystems, or packages.

O

interesting version sets
e For each analysis we could declare

o how to prepare the environment for the analysis.

o how to run analysis on each system/version.

o how to interpret and compare the results, and generate statistics.
e We could define a portable workflow to automatically run the study

o on a powerful remote server.

o distributed over the cloud.
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Source
Code

e Cloud Instances

ARCADE-Controller (ATLAS)
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o Download and compile the source code

o Run the analysis on the subject system

o Send the artifacts to the analysis server

e Analysis Server

o Compares the artifacts using change metrics

o Gets the statistics
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ARCADE-Controller (ATLAS) - cont.

e The ability to define a solid workflow for the analysis
o Replicability
e The ability to employ cloud-computing power to run large-scale analyses in a reasonable amount of time
o Scalability
e The ability to use the same subject systems for different analyses
o Data Consistency and Reusability
e The ability to run each analysis in a cloud instance as a sandbox
o Running static (e.g., ARCADE) and dynamic (e.g., FieryEye') analysis

1. FieryEye is dynamic web-interface analyzer. We used the same technique to resolve the scalability issues for FieryEye.
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New Results

e Architectural evolution
o  Architecture recovery and architectural changes: ACDC, ARC, PKG, A2A, CVG

e Allit takes from downloading the source code from the repository to generating the statistics is “push a
button”!

o  Both on a local machine or on the cloud

e There are already several subject systems configured in the framework
o  The capability to collect a large amount of data without much effort!

e How about the evolution of other aspects (e.g., defects, style, debt) of a software system?
o  FindBugs, PMD, CheckStyle, SonarQube, UCC, SLOCCount
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FindBugs

Evolution of alibaba-druid

e Finds bugs in Java programs. /_/_/_/J_,_//—de total_size

e Analyze programs compiled for o I—

BO

any version of Java. _ num_packages

e Requires binary releases

oo

1000

total_classes

180

:l \/—/\/_/_/—\/—/_/ total_bugs
120

_,.‘._W priority_1
150 e

25 priority_2
100

e referenced classes

USC Viterbi

School of Engineering University of Southern California



PMD

Evolution of alibaba-druid
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Checkstyle

Evolution of google-truth

e Helps programmers write Java jj;f—f__““/'_—
code that adheres to a coding

standard.
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e Manages code quality.

e Covers the 7 axes of code
quality:

Architecture & Design

Potential bugs Complexity

http://www.sonarqube.org
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UCC (Unified Code Count)

Evolution of apache-ant-ivy
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SLOCCount (calculates basic COCOMO model)

) ] Evolution of apache-ant-ivy
e Counts physical source lines
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Discussion

e Suggestions
o  What other static analysis tools can be added to the framework?
o  What dynamic analysis tools can be added to the framework?

o  Would it be interesting if we extend the framework to study difference between commits and the
impact of each developer?
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