
How to Measure and Estimate Software
Maintainability for Open Source Projects?

Celia Chen

Agenda
• Systematic literature review on Maintenance Effort Estimation for Open

Source Projects

• A comparison study on automated metrics and human-assessed metrics

Why Maintainability?

Low Maintainability

Difficult to modify Increase the participation cost

Difficult to find solutions for bugs Increase maintenance effort

Why Maintainability?

Low Maintainability

Difficult to modify Increase the participation cost

Difficult to find solutions for bugs Increase maintenance effort

A successful OSS project requires to be
highly maintainable

Results from the Empirical Study on MI

● We performed an empirical analysis on Maintainability Index.

● Among 97 OSS projects written in Java, PHP and Python,
Maintainability Index differs across three languages at 90%
confidence level.

● Among 97 OSS projects in the domains of Web Development
Framework, Audio & Video, Security, Testing Tools and System
Administration, Maintainability Index differs across five domains at
95% confidence level.

Pros & Cons of Maintainability Index
Pros:

-Very popular and often used in maintenance practice
-Very easy to use

Cons:

-MI is a composite metrics and as such it is hard to determine which of the metrics
cause a particular total value for MI
-The different metric values depend on the type of programming language, the
programmer, the perception of the quality of code, etc.

How do others measure OSS maintainability?

● In order to understand its current state of the art and to identify
opportunities for future research, we performed a systematic literature
review on OSS maintenance effort estimation approaches.

● This paper was accepted and published in the ICSME 2016
proceedings.

Systematic Literature
Review on Maintenance

Effort Estimation for Open
Source Projects

A comparison study on
automated and human-
assessed maintainability

metrics

Research Questions
RQ1: What evidence is there for maintenance effort estimation techniques/methods for OSS
projects?

RQ2: What metrics related to OSS development records are extracted for maintenance
effort estimation and how can they be classified?

RQ3: What are common projects and the size of dataset used as study cases in OSS
maintenance effort estimation, and how has the frequency of approaches related to the size
of dataset?

RQ4: What methods/approaches are used to estimate actual project maintenance effort
(including those from the usual incomplete OSS development records)?

RQ5: What is the overall estimation accuracy of OSS maintenance effort estimation?

Study Selection

RQ1: Classification and Research Type

● Studies aim to predict effort of maintenance activity
mainly concentrated on bug fixing time prediction.

● Less efforts contributed to other types of activities
such as peer code review and duplicate issues
identification.

● The highest frequency was in the research for
developing estimation method. Within this method, the
highest frequency was in predicting maintenance
activity effort.

RQ2: Metrics/Factors
● There are 85 metrics in total.

● Priority of bug has the highest
support with nine studies used
it in their estimation models.

The detailed descriptions of these metrics can be found on: http://itechs.iscas.ac.cn/cn/membersHomepage/wuhong/metrics.html

● Severity was also commonly used in estimation.

RQ3: Studied Projects and Dataset

Most selected studies under the topic of
predicting maintenance activity time
used bigger datasets but most studies
under the topic of predicting
maintenance effort of entire projects
both directly and indirectly used smaller
datasets.

RQ4: Estimation Methods
The results show that estimation models for entire projects adopted a diversity of
types of metrics while using linear model or classification methods.

The estimation models for maintenance activity are opposite.

The issue-report related metrics are the main metrics while these models adopted
a diversity of methods.

RQ5: Estimation Accuracy
20 out of the 29 selected paper
presented some sort of evaluation
methods, whether mathematical or
descriptive.

Discussions
● New evaluation methods are needed to validate the correctness of these

estimation methods.

● Maintenance cost estimation models of OSS projects are different with
general software system.

● Studies that can quantitatively infer OSS maintenance effort from size-related
metrics are needed.

● It will be worthwhile to explore the capability model for OSS developers.

Systematic Literature
Review on Maintenance

Effort Estimation for Open
Source Projects

A comparison study on
automated and human-
assessed maintainability

metrics

Study Design
Goal: to compare the human-assessed maintainability metrics with the automated
maintainability metrics counterparts.

Research Question: Which metrics can more accurately reflect software
maintainability?

Context Selection:

- 11 open source projects found on Sourceforge and Apache

This study was accepted and published in NASAC 2017 and ICSE Poster 2017.

Automated Maintainability Metrics Assessment

Human-assessed Maintainability Metrics Assessment
- Participants: six recruited developers

- Task: to perform maintenance tasks (bug fixing or new feature requests
implementation) on 11 open source projects

- Collected metrics:
- Developers: Overall industry experience, OSS experience
- Tasks: Task difficulty, average time spent on task, task completion
- COCOMO II SU factors: Factor rating and rationale

COCOMO II Software Understandability Factors

Experiment Process

Analysis Results
- Pearson product-moment correlation:

- Automated Maintainability Metrics Result:

- MI, MIwC, and CR showed strong negative correlation with actual effort spent

- TD, TDD, MIwtC, HV, CC, and LOC are not correlated

- Human-assessed Maintainability Metrics Result:

- Structure, Application Clarity and Self-Descriptiveness are strongly correlated

- Documentation quality is not correlated

Developers Experience
- Developers with more experience complete higher percentage of tasks.

- Developers with more experience spend less effort on hard tasks. However, the
differences on easy tasks are very minor.

- Developers with more experience change more lines of existing code when
performing maintenance tasks.

Comparison Results and its Application
- The results suggest that human-assessed maintainability metrics may be a

better and more accurate alternative to estimate software maintainability.

- However, in practice, the automated metrics such as TD and MI approaches
can efficiently help prioritize the parts of the software that need the most
attention.

- Both human assessed and automated approaches can be synergetic.

Conclusions

- Maintainability Index and Technical Debt can be used as an indicator for
software maintainability but with limitations.

- Automated maintainability approaches need to be combined with human-
assessed approaches to better measure software maintainability.

