How to Measure and Estimate Software
Maintainability for Open Source Projects?

Celia Chen

Agenda

« Systematic literature review on Maintenance Effort Estimation for Open
Source Projects

* A comparison study on automated metrics and human-assessed metrics

Why Maintainability?

Low Maintainability

Poua-
=l cha”ge. o(@
h 7 ge. ﬁ

Difficult to modify Increase the participation cost

Difficult to find solutions for bugs Increase maintenance effort

Why Maintainability?

Low Maintainability

Pon¢ cha”g " D

T

™ A successful OSS project reires to be
highly maintainabl

e

Difficult to find solutions for bugs Increase maintenance effort

Results from the Empirical Study on Ml

e We performed an empirical analysis on Maintainability Index.

e Among 97 OSS projects written in Java, PHP and Python,
Maintainability Index differs across three languages at 90%
confidence level.

e Among 97 OSS projects in the domains of Web Development
Framework, Audio & Video, Security, Testing Tools and System
Administration, Maintainability Index differs across five domains at
95% confidence level.

Pros & Cons of Maintainability Index

Pros:

-Very popular and often used in maintenance practice
-Very easy to use

Cons:

-Ml is a composite metrics and as such it is hard to determine which of the metrics
cause a particular total value for Ml

-The different metric values depend on the type of programming language, the
programmer, the perception of the quality of code, etc.

How do others measure OSS maintainability?

e In order to understand its current state of the art and to identify
opportunities for future research, we performed a systematic literature
review on OSS maintenance effort estimation approaches.

e This paper was accepted and published in the ICSME 2016
proceedings.

Systematic Literature
Review on Maintenance
Effort Estimation for Open
Source Projects

A comparison study on

automated and human-

assessed maintainability
metrics

Research Questions

RQ1: What evidence is there for maintenance effort estimation techniques/methods for OSS
projects?

RQ2: What metrics related to OSS development records are extracted for maintenance
effort estimation and how can they be classified?

RQ3: What are common projects and the size of dataset used as study cases in OSS
maintenance effort estimation, and how has the frequency of approaches related to the size
of dataset?

RQ4: What methods/approaches are used to estimate actual project maintenance effort
(including those from the usual incomplete OSS development records)?

RQ5: What is the overall estimation accuracy of OSS maintenance effort estimation?

Study Selection

IEEE Xplore, ACM
Digital Library, Science
Direct, Google
Scholar,Inspec,
Compendex

169 articles

Exclusion and
Inclusion(abstract
and litle)

With Duplicates: 6917
Without Duplicate: 3312

Fast
Reading

40 articles

Snowball &

31 articles

Manual search

Quality
assessment

29 articles

RQ1: Classification and Research Type

o Sub-topic e Studies aim to predict effort of maintenance activity
Indirect effort | Sonce Co0eDased mainly concentrated on bug fixing time prediction.
prediction of the
entire project FHOCER besod : oy
;snmlansn . e Less efforts contributed to other types of activities
) eople-base . . .
Direct effort estimation such as peer code review and duplicate issues

prediction of the

. . Activity-based
entire project

estimation

identification.

Peer code review

Effort prediction | Duplicate issues ¢ The highest frequency was in the research for

of maintenance identification

activity . developing estimation method. Within this method, the
ug TN highest frequency was in predicting maintenance
Individual contribution measurement activity effort_

Guidelines and discussion

Topic | Type of Metric Set

RQ 2 : M etri CS / F aCtO rs Predict indirect effort of the grh?no;::{jléxc,?:::c}{wn}

entire project

Predict direct effort of the Pro_].ocjt{Tlmc, Commits, Developer},
. . " oot Participant{Bug Collaborator},
e There are 85 metrics in total. entire projec Community{ Contributor}

Project{ Size, Time, Task, Bugs},
. . . . Changes{ ALL}, Issue Report{ ALL},
e Priority of bug has the highest Predict effort of maintenance p«mic?;;fn{Bu}g ngsncﬁp i

support with nine studies used ey Bag Colshotssc,
Community { workload}
it in their estimation models. Measure individual contribution | P2rticipant{ALL},
Community { Activity }
Guidelines and discussion Project{Size }, Changes{CC}

e Severity was also commonly used in estimation.

The detailed descriptions of these metrics can be found on: http://itechs.iscas.ac.cn/cn/membersHomepage/wuhong/metrics.html

RQ3:

Size > 14000 6
4289<c= Size <14000 2 4 1

567<= Size <4289 1 1 3

Size < 567

Studied Projects and Dataset

Most selected studies under the topic of
predicting maintenance activity time
used bigger datasets but most studies
under the topic of predicting
maintenance effort of entire projects
both directly and indirectly used smaller
datasets.

RQ4: Estimation Methods

The results show that estimation models for entire projects adopted a diversity of
types of metrics while using linear model or classification methods.

The estimation models for maintenance activity are opposite.

The issue-report related metrics are the main metrics while these models adopted
a diversity of methods.

RQ5: Estimation Accuracy

20 out of the 29 selected paper
presented some sort of evaluation
methods, whether mathematical or
descriptive.

Topic

| Sub-topic

Estimation Method

Indirect effort
prediction of the

Source code
based estimation

Linear regression
model

entire project pOCKRSN- Dy Classification
estimation
i Manpower function
Direct effort People-based po

prediction of the
entire project

Classification

Activity-based

Linear model

Effort
prediction of
maintenance
activity

Effort for peer . .
code review Non-linear equation
Eftort for

duplicateissues Classification model
identification

Bug fixing time

linear regression

Decision tree

Support Vector
Machine (SVM)

K-Nearest
Neighbor (KNN)

Aprion & K-means

Logistic Regression

Naive Bayes

Distnbution Functions

Average weighted
similanty

Discussions

e New evaluation methods are needed to validate the correctness of these
estimation methods.

e Maintenance cost estimation models of OSS projects are different with
general software system.

e Studies that can quantitatively infer OSS maintenance effort from size-related
metrics are needed.

e It will be worthwhile to explore the capability model for OSS developers.

Systematic Literature
Review on Maintenance
Effort Estimation for Open
Source Projects

A comparison study on

automated and human-

assessed maintainability
metrics

Study Design

Goal: to compare the human-assessed maintainability metrics with the automated
maintainability metrics counterparts.

Research Question: Which metrics can more accurately reflect software

maintainability? TABLE I
CHARACTERISTICS OF PROJECT DATA SOURCES
Number of
. . Language Proiects Average SLLOC
Context Selection: — = e
PHP 5 67,145

- 11 open source projects found on Sourceforge and Apache

This study was accepted and published in NASAC 2017 and ICSE Poster 2017.

Automated Maintainability Metrics Assessment

TABLE 11

AUTOMATED MAINTAINABILITY METRICS MEASURED IN THE CONTEXT

OF RQ

Metrics

Description / Equation

Technical Debt (TD)

Lines of Code (LOC)

Technical Debt
Density (TDD)

Maintainability Index
without Comments (MIwtC)

Maintainability Index
with Comments (MIwC)

Maintainability Index (MI)
Halstead Volume (HV)
Code Complexity (CC)
Comment Ratio (CR)

The total amount of effort in man-hours
is required in order to reimburse

all debts in the project

The number of lines of code
(Excluding comments and white spaces)

TD per LOC

An index value excluding code comments
that represents the relative ease

of maintaining the code.

An index value including code comments
that represents the relative ease

of maintaining the code.

Sum of MIwtC and MIwC
Halstead complexity measures
McCabe’s cyclomatic complexity
The percentage of comments

Human-assessed Maintainability Metrics Assessment

Participants: six recruited developers

Task: to perform maintenance tasks (bug fixing or new feature requests
implementation) on 11 open source projects

Collected metrics:
- Developers: Overall industry experience, OSS experience
- Tasks: Task difficulty, average time spent on task, task completion
- COCOMO II SU factors: Factor rating and rationale

COCOMO Il Software Understandability Factors

Factor

Structure

Application
Clarity

Self-
Descriptiveness

Very Low
Very low
cohesion,
high
coupling,
spaghetti
code.

No Match
between
program

an application
worldviews.

Obscure

code;
documentation
missing,
obscure

or obsolete.

Low

Moderately low
cohesion,

high

coupling.

Some
correlation
between
program
and
application.

Some code
commentary
and

headers;

some useful
documentation.

Nominal

Reasonably well
structured;

some weak areas.

Moderate
correlation
between
program
and
application.

Moderate

level of code
commentary,
headers,
documentation.

High

High
cohesion,
low
coupling.

Good
correlation
between
program
and
application.
Good code
commentary
and

headers;
useful
documentation;
some weak
areas.

Very High

Strong modularity,
information hiding
in data/control structures.

Clear match
between
program

and application
worldviews.

Self-descriptive
code;
documentation
up-todate,
wellorganized,
with design
rationale.

Experiment Process

Al

Analysis Results

- Pearson product-moment correlation:
- Automated Maintainability Metrics Result:
- MI, MIwC, and CR showed strong negative correlation with actual effort spent
- TD, TDD, MIwtC, HV, CC, and LOC are not correlated

- Human-assessed Maintainability Metrics Result:
- Structure, Application Clarity and Self-Descriptiveness are strongly correlated

- Documentation quality is not correlated

Average Effort Spent on Difficult Tasks

12 14 16 18 20

1

Developers Experience

- Developers with more experience complete higher percentage of tasks.

- Developers with more experience spend less effort on hard tasks. However, the

differences on easy tasks are very minor.

- Developers with more experience change more lines of existing code when

performing maintenance tasks.

|

|

1

19.238 @ 19.022 @
15.362 @
114231 e 14.029 @
1197 @
T I T
No Experience 0-2 Years 2-4 Years
Experience

Average Effort Spent on Easy Tasks

3.5 40 45

3.0

3782 m

3.029 m

4283 m

No Experience

0-2 Years

Experience

I
2-4 Years

LOC Changed Per Task

300 400

200

437 o
317
o
299 o
248
o]
212
203 8
I I [
No Experience 0-2 Years 2-4 Years
Experience

Comparison Results and its Application

- The results suggest that human-assessed maintainability metrics may be a
better and more accurate alternative to estimate software maintainability.

- However, in practice, the automated metrics such as TD and MI approaches
can efficiently help prioritize the parts of the software that need the most
attention.

- Both human assessed and automated approaches can be synergetic.

Conclusions

Maintainability Index and Technical Debt can be used as an indicator for
software maintainability but with limitations.

- Automated maintainability approaches need to be combined with human-
assessed approaches to better measure software maintainability.

