Weather forecasting and fade mitigation

GSAW 2005

Orbit attenuation due to rain exceeded for 1 % at 50 GHz

Robert J Watson & Duncan D Hodges
r.j.watson@bath.ac.uk & d.d.hodges@bath.ac.uk
Telecommunications, Space and Radio Group
University of Bath
Introduction

Why bother to forecast propagation conditions …
- Better performance than “closed-loop” FMT systems?
- what can a priori knowledge of fades do for us?
- Proactive rather than reactive fade countermeasures
- What if the time-of-flight becomes too long?

Our approach: use meteorological information to determine propagation conditions – can be done in real-time
Background to our work

- Fade mitigation technique simulation …
 - Design of FMT systems e.g. **power-control, variable rate coding**
 - Requirement for synthetic attenuation time-series

- Our approach …
 - recreate the meteorology …
 - …rather than to attempt to model the statistical and dynamic behaviour of attenuation …
 - …and then estimate the resulting propagation conditions
Generation of historical time-series

▶ Estimate attenuation from combination of
 ▷ archived numerical weather prediction model data (UK Met Office’s so-called Unified Model)
 ▷ UK Met Office’s weather radar network (15 C-band radars)

▶ Have the complete “picture” - fade estimates for entire networks that have …
 ▷ correct spatial and temporal statistics (e.g. cdf)
 ▷ correct dynamic characteristics (e.g. fade slope)
 ▷ correct spectral characteristics (e.g. psd)
University of Bath model

Image of a diagram showing the University of Bath model for radar downscaling and attenuation modeling.
Example time-coincident time series for multiple sites

- Data from 22/6/2003
- Fade Level experienced from 50 GHz Downlink
- Geo satellite at 2W
ITU-R verification – Bath, UK 50 GHz
The thin line represents the VDK theoretical model, the thick line represents the analysis from the output time series.
Example model output

- Data from UM (5 minute intervals)
- 1st April 1998
- Fade Level (dB) experienced from 50 GHz Downlink
- Geo satellite at 2W
Forecasting for resource management

- If run in real-time the model can provide forecasts of network availability – *can be used for network control*
- The components that model stochastic small scale structures are disabled – *you can’t predict the actual scintillation*
Advantages of employing forecasting techniques

- Can take time to get **accurate signal quality measurements** (BER, PER etc), or the coding used may be so strong that the PER dynamic range is insufficient.

- Allows “proactive” resource management systems such as time diversity techniques to **create service availabilities that exceed link availabilities**.

- Can be used when time-of-flight is longer than the channel can be considered stationary.
Errors – what if it goes wrong?

▶ Suppose the forecast is wrong – what effect does that have on the network performance?
▶ can we make things worse?

▶ How can the forecast go wrong?
▶ Temporal errors - e.g. a fade is correctly predicted - but occurs earlier/later than forecast
▶ Spatial errors - e.g. rain cells occur that the forecast does not predict
▶ Fade depth errors - e.g. fade is deeper than predicted – variability in raindrop size distribution
Temporal error results

- If we sum all the terminal error performances, we can get a measure of the overall network performance.
- From a network point of view we get an improvement over the temporal error ranges:
 - Terminal set 1:
 - -10.17 to 10.24 mins,
 - Terminal set 2:
 - -9.92 to 10.04 mins.
20.7 GHz GBS (23W) Beacon
Chilbolton & Sparsholt

- Currently the only live Ku / Ka / V band beacon measurements in the UK
- US military satellite – ephemeris is not precisely known
- We have taken an example week 13-20th October 2004 of beacon measurements, filtered to remove most of the scintillation component
- The model outputs were taken for a 3x3 0.11 degree grid around the relevant receiver
20.7 GHz GBS (23W) Beacon
Chilbolton & Sparsholt
20.7 GHz GBS (23W) Beacon
Chilbolton & Sparsholt

- Simulating operational ‘tactical’ deployment
- Measure the ability to predict an attenuation threshold being exceeded
 - Fade warning or suggested data rate change etc
- Measure forecasting skill as a Extreme Dependency Score (EDS)
 - More appropriate than Equitable Threat Score (ETS) for rare events, EDS is not explicitly dependent on bias or base rate
- Initial investigations showed that the greatest skill was demonstrated with an umbrella point of 1
Example ETS measures for 24 precipitation forecasts at 10mm/hr threshold - compared to NIMROD radar system:

- HIRLAM (Finnish Met. Inst.) (22km) 0.45
- ALADIN (Meteo France) (10km) 0.55
- Lokal Modell LM (DWD, Germany) (7km) 0.60
- UM (UK Met Office) (12km) 0.70
The Future

► NWP model development …
 ▶ Smaller grid lengths – improves resolution and accuracy
 ▶ Improvements in the modelling of convection

► UK Met Office has operational European domain model – *encompasses all of Europe on a 12 km grid*

► Future work …
 ▶ more experimental beacon data – increase confidence
 ▶ does it work for other climate zones – tropical regions?
Acknowledgements

This work is funded by the UK Engineering and Physical Sciences Research council and (in part) BAE SYSTEMS

We thank the UK Met Office, the British Atmospheric Data Centre and the Rutherford Appleton Laboratory (GBS beacon data)